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Abstract—With the rapid upsurge of deep learn-
ing tasks at the network edge, effective edge artificial
intelligence (AI) inference becomes critical to provide low-
latency intelligent services for mobile users via leveraging
the edge computing capability. In such scenarios, energy
efficiency becomes a primary concern. In this paper,
we present a joint inference task selection and downlink
beamforming strategy to achieve energy-efficient edge Al
inference through minimizing the overall power consump-
tion consisting of both computation and transmission
power consumption, yielding a mixed combinatorial
optimization problem. By exploiting the inherent connec-
tions between the set of task selection and group sparsity
structural transmit beamforming vector, we reformulate
the optimization as a group sparse beamforming problem.
To solve this challenging problem, we propose a log-
sum function based three-stage approach. By adopting
the log-sum function to enhance the group sparsity, a
proximal iteratively reweighted algorithm is developed.
Furthermore, we establish the global convergence analysis
and provide the ergodic worst-case convergence rate for
this algorithm. Simulation results will demonstrate the
effectiveness of the proposed approach for improving
energy efficiency in edge Al inference systems.
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I. INTRODUCTION

he availability of big data and computing power, along

with the advances in the optimization algorithms, has
triggered a booming era of artificial intelligence (AI). No-
tably, deep learning'® is regarded as the most popular sec-
tor in modern Al and has achieved exciting breakthroughs in
applications such as speech recognition, computer vision,
etc. Benefiting from these achievements, Al is becoming a
promising tool that streamlines people’s decision-making pro-
cess and facilitates the development of diversified intelligence
services (e.g., virtual personal assistant, recommendation sys-
tem, etc). Meanwhile, with the proliferation of mobile com-
puting as well as Internet of things (IoT) devices, massive real-
time data are generated locally!*). However, it is widely ac-
knowledged that traditional cloud-based computing!>®! faces
challenges (e.g., latency, privacy and network congestion) for
supporting the ubiquitous Al-empowered applications on mo-
bile devices!!.

In contrast, edge Al is a promising approach, which
can tackle the above concerns, via fusing mobile edge
computing® with Al-enabled techniques (e.g., deep neural
networks (DNNs)). By pushing AI models to the network
edge, it brings the edge servers close to the requesting mobile
devices and thus enables low-latency and privacy-preserving.
Notably, edge Al is envisioned as the key ingredient of future
intelligent 6G networks®'?/, which fully unleashes the poten-
tials for mobile communication and computation. Typically,
edge Al consists of two phases of edge training and edge in-
ference. As for the edge training phase, the training of Al
models can be performed on cloud, edge or end devices!3,
however, this is beyond the scope of this work. By deploy-
ing trained Al models and implementing model inference at
network edges, this paper mainly focuses on edge inference.
Following Refs. [7,14], edge Al inference architectures are
generally classified into three major types.

e On-device inference. It performs the model inference di-
rectly on end devices where DNN models are deployed. While
some enabling techniques (e.g., model compression!!>!10]
hardware speedup!!”!) have been proposed to facilitate the
deployment of the DNN model, it still poses challenges for
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resource-limited (e.g., memory, power budget and computa-
tion) end devices!'®. To mitigate such concerns, on-device
distributed computing is envisioned as a promising solution
for on-device inference, which enables AI model inference
across multiple distributed end devices!'"!.

e Joint device-edge inference. This mode carries out the
Al model inference in a device-edge cooperation fashion!”!
with the model partition and model early-exit techniques®”!.
While device-edge cooperation is flexible and enables low
correspondence-latency edge inference, it may still have high
resource requirements for end devices due to the resource-
demanding nature of DNNs/?!1,

e Edge server inference. Such methods transfer the raw
input data to edge servers for processing, which then re-
turn inference results to end-users!?>?3l. Edge server infer-
ence is particularly suitable for those computation-intensive
tasks. Nonetheless, the inference performance relies mainly
on the channel bandwidth between the edge server and end
devices. Cooperative transmission!?*! becomes promising for
communication-efficient inference results delivery.

To support those computation-tasks on the resource-limited
end devices, edge server inference stands out as a viable so-
lution to fulfill the key performance requirements. The main
focus of this paper is on the Al model inference for mobile de-
vices with the edge server inference architecture. For the edge
Al inference system, energy efficiency is a key performance
indicator''#!, which motives us to focus on the energy-efficient
edge inference design. This is achieved by optimizing the
overall network power consumption, including computation
power consumption for performing inference tasks and trans-
mission power consumption for returning inference results. In
particular, cooperative transmission/**! is a widely recognized
technique to reduce the downlink transmit power consump-
tion and provide low-latency transmission services by exploit-
ing the high beamforming gains for edge AI inference. In
this work, we thus consider that multiple edge base stations
(BSs) collaboratively transmit the inference results to the end
devices!??). To enable transmission cooperation, we apply the
computation replication principle!®, i.e., the inference tasks
from end devices can be performed by several neighboring
edge BSs to create multiple copies of the inference results.
However, computation replication greatly increases the power
consumption in performing inference tasks. Therefore, it is
necessary to select the inference tasks to be performed by each
edge BS to achieve an optimal balance between communica-
tion and computation power consumption.

In this paper, we propose a joint inference task selec-
tion and downlink beamforming strategy towards achieving
energy-efficient edge Al inference by optimizing the over-
all network power consumption consisting of the computa-
tion power consumption and the transport network power
consumption under the quality-of-service (QoS) constraints.

However, the resulting formulation contains combinatorial
variables and nonconvex constraints, which makes it compu-
tationally intractable. To address this issue, we observe that
the transmit beamforming vector has an intrinsic connection
with the set of inference task selection (i.e., tasks are opted by
edge servers to execute). Based on this crucial observation, we
present a group sparse beamforming (GSBF) reformulation,
followed by proposing a log-sum function based three-stage
GSBF approach. In particular, in the first stage, we adopt a
weighted log-sum function based relaxation to enhance the
group sparsity of the structural solutions.

Nonetheless, the log-sum function minimization problem
poses challenges in computation and analysis. To resolve
the issues, we present a proximal iteratively reweighted algo-
rithm, which solves a sequence of weighted convex subprob-
lems. Moreover, we establish the global convergence analy-
sis and worst-case convergence rate analysis of the presented
proximal iteratively reweighted algorithm. Specifically, by
leveraging the Fréchet subdifferential®®!, we characterize the
first-order necessary optimality conditions of the formulated
convex-constrained log-sum problem. We then show that the
generated iterates of the proposed algorithm make the func-
tion values steadily decrease and prove that any cluster point
of the generated entire sequence is a critical point of the initial
objective for any initial feasible point. Finally, we show that
the defined optimality residual has O(1/t) ergodic worst-case
convergence rate, where ¢ is the iteration counter.

In the following, we summarize the major contributions of
this paper as follows.

e We propose a joint task selection and downlink beam-
forming strategy to optimize the trade-off between computa-
tion and communication power consumption for an energy-
efficient edge Al inference system. In particular, task selec-
tion is achieved by controlling the group sparsity structure
of the transmit beamforming vector, thereby formulating a
group sparse beamforming problem under the target QoS con-
straints.

e To solve the resulting optimization problem, we propose
a log-sum function based three-stage GSBF approach. In par-
ticular, we adopt a weighted log-sum approximation to en-
hance the group sparsity of the transmit beamforming vector
in the first stage. Moreover, we propose a proximal iteratively
reweighted algorithm to solve the log-sum minimization prob-
lem.

e For the presented proximal iteratively reweighted algo-
rithm, we establish the global convergence analysis. We prove
that every cluster point generated by the presented algorithm
satisfies the first-order necessary optimality condition for the
original nonconvex log-sum problem. Furthermore, a worst-
case O(1/t) convergence rate is established for this algorithm
in an ergodic sense.

e Numerical experiments are conducted to demonstrate
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the effectiveness and competitive performance of the log-sum
function based three-stage GSBF approach for designing the
green edge Al inference system.

A. Related Works

The study of inducing sparsity generally falls into the
sparse optimization category'?’-8). In particular, sparse op-
timization, emerging as a powerful tool, has recently con-
tributed to the effective design of wireless networks, e.g.,
group sparse beamforming for energy-efficient cloud radio
access networks?>* and sparse signal processing for IoT
networks?*!32l. In particular, to induce the group sparsity
structure of the beamforming vector, the work of Refs. [22,23]
adopted the mixed ¢;-norm. As illustrated in Ref. [27],
the mixed /; ;-norms (g > 1) can induce the group sparsity
structure of the interested solution. Moreover, the mixed
1 2-norm and /; -norm¥ are commonly adopted. How-
ever, the effectiveness of sparsity based on convex sparsity-
inducing norms is not satisfactory since there always exists
some small nonzero elements in the obtained solutions?**).
In contrast to these works, some works applied nonconvex
sparsity-inducing functions to seek sparser solutions'*>!. No-
tably, the work [34] reported the capability of log-sum func-
tion for enhancing the sparsity of the solutions.

Motivated by their superior performance on inducing spar-
sity, we adopt log-sum functions to promote the sparsity pat-
tern in the solutions. However, adopting the log-sum func-
tion to enhance sparsity usually makes the problem difficult to
compute and analyze. In Ref. [34], the authors first proposed
an iteratively reweighted ¢; algorithm (IRL1) for tackling the
nonconvex and nonsmooth log-sum functions with linear con-
straints. Nonetheless, they did not further conduct the con-
vergence analysis for the proposed method. Under reason-
able assumptions, the work of Ref. [36] established the con-
vergence results for a class of unconstrained nonconvex non-
smooth problems based on the limiting-subgradient tool. In
particular, these results could apply to the log-sum model in
an unconstrained setting. In Ref. [37], they proposed a prox-
imal iteratively reweighted algorithm and proved that any ac-
cumulation point is a critical point. The work of Ref. [38]
further showed that, for any starting feasible points, the se-
quence generated by their proximal iteratively reweighted al-
gorithm could converge to a critical point under the Kurdyka-
Lojasiewicz property'?®!. However, these works focused on
the unconstrained formulation or linearly constrained cases
when the log-sum model is involved. The theoretical analysis
for the log-sum function with general convex-set constraints
has not been investigated.

B. Organization

The remainder of this paper is organized as follows. Sec-
tion I presents the system model of the edge Al inference,

followed by the problem formulation and analysis. Section
I1.C provides the group sparse beamforming formulation. The
log-sum function based three-stage GSBF approach is pro-
posed in section III. Section IV provides the global conver-
gence and convergence rate analysis of the proposed proximal
iteratively reweighted algorithm. Section V demonstrates the
performance of the proposed approach. The conclusion re-
mark is made in section VI. To keep the main text coherent
and free of technical details, we divert most of the mathematic
proofs to the Appendices.

C. Notation

Throughout this paper, we subsume the notation used as
follows. We use C" and R" to denote the complex vector
space and the real Euclidean n-space R", respectively. Bold-
face lower-case letters and upper case letters to represent vec-
tors (e.g., «) and matrices (e.g., I) with an appropriate size,
respectively. The inner product between x,y € C" is denoted
as (x,y). ||-]|1 and || - | is the conventionally defined ¢;-norm
and /»-norm for any vectors in C", respectively. In addition,
we use ()" and ()T to denote the Hermitian and transpose
operators, respectively. 93(-) is the real part of a complex
scalar. 1 is a vector with all components equal to 1 and O
denotes the zero vector with an appropriate size. In particular,
|vllg, = [llvi]l2,- |[vall2]" € R” represents a vector whose
nth element is the #,-norm of a structured vector v, € C". We
use o to denote composition operation between two functions
and symbol ® defines the element-wise product for any two
vectors x,y € C".

For any closed convex set ¥ C C", we use 8¢(c) to de-
note the characteristic function associated with %’, which is

defined as
0, CET,
O¢(c) = {
+oo, c¢F.

Similarly, I(-) defines an indicator function associated with
the given condition -, i.e., if condition - is met, then re-
turn the value 1; otherwise, return the value 0. Moreover,
7~ €N (u,0?) corresponds to the complex random variable

z with mean y and variance 6.

II. SYSTEM MODEL AND
PROBLEM FORMULATION

This section describes the overall system model and power
consumption model for performing intelligent tasks in the
considered edge Al inference system, followed by the prob-
lem formulation and analysis.

A. System Model

We consider an edge computing system consisting of N L-
antenna BSs collaboratively serving K single-antenna mobile
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Figure 1 System model illustration of the edge Al inference for intelligent
tasks (This paper considers the scenario that each neighboring edge BS has
collected the raw input data {d;} from mobile users.)

users (MUs), as illustrated in Fig. 1. These deployed BSs are
used as dedicated edge nodes and have access to the enor-
mous computation and storage resources!®!. For convenience,
define # = {1,--- ,K} and A ={1,--- N} as the index sets
of MUs and BSs, respectively. MUs have inference computing
tasks, and the results can be inferred from task-related DNNs.
For ease of expression, we use d; to denote the raw input
data collected from MU k, and the corresponding inference
results are represented as @ (dy). As performing intelligent
tasks on DNNGs are typically resource-demanding, it is usually
impractical to perform the tasks on resource-constrained mo-
bile devices locally. In the proposed edge Al inference system,
by exploiting the computation replication'>!, we consider the
scenario that each neighboring edge BS has collected the raw
input data {d;} from all MUs. Then the edge BSs process
the data {d;} for model inference. After the edge BSs com-
plete the model inference, the inference results {¢y(dy)} are
returned to the corresponding MUs via the downlink channels.
We assume that all edge BSs have been equipped with the pre-
trained deep network models for all inference tasks(?*!.

In the downlink transmission, the edge BSs, which perform
the inference tasks for the same MU cooperatively, return the
inference results to the MU. We assume perfect channel state
information (CSI) is available to all edge BSs to enable coop-
erative transmission for the inference results>¥. Let <7, C ¢
denote the indexes of MUs whose tasks are selectively per-
formed by BS n, and & = (4, -+, oy) represents task se-
lection strategy.

1) Downlink Transmission Model: Let s, € C denote the
encoded scalar of the requested output {¢(dy)} for MU k,
and v, € CL be the transmit beamforming vector at the BS
n for s;. For convenience, and without loss of generality, we
assume that E(|sx|?) = 1, i.e., the power of s; is normalized to

the unit. The transmitted signal x,, at BS n can be expressed
as
Lp = Z UnkSk- (D
ke,
Let h,; € CL be the propagation channel coefficient vector
between BS n and MU k. The received signal at MU k denoted
as y, is then given by

H H
Yk = Z hxn + 2z = Z Rk Z US|+ 2k =
neN neN led,

Y i |lk € F)vmsi+ Y, vusi| +u ()
neN leaty Ik

where z; ~ €4 (0,67) is the isotropic additive white Gaus-
sian noise.

We assume that all data symbols s; are mutually indepen-
dent of each other as well as noise. Based on (2), the signal-
to-interference-plus-noise ratio (SINR) for MU £ is therefore
given as

SINRy (o) — | Zen Tk BB
Yok Lnen Il € ) hE vy >+ 0f

2) Power Consumption Model: The computation and
transmission power consumption for model inference is gen-
erally large. Energy efficiency is of significant importance
for an energy-efficient edge Al inference system design, for
which the overall network power consumed in computation
and communication at the edge BSs becomes our main inter-
est. Specifically, we express the total transmission power for
all edge BSs in the downlink as

Mo
Ptrans(%v{vnk}) = Z —E Z ”vnksk”% =
n=1 T | ke,
N 1 5
Z Z 7ank”27 (4)
n—1 ke 'l

where 1), is the radio frequency power amplifier efficiency co-
efficient of edge BS n.

In addition to the downlink transmission power consump-
tion, the power consumed in performing Al inference tasks
should be taken into consideration as well, owing to the
power-demanding nature of running DNNs. We use P, to
denote the computation power consumption of the BS n in
performing inference task ¢. Then the computation power
consumed by all BSs are given by

Pcomp(d) = Z Z nck' o)
neN ke,

For the estimation of the computation energy consumption
in executing task ¢ therein, the works [40,41] stated that the
energy consumption of a deep neural network layer for infer-
ence mainly includes computation energy consumption and
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data movement energy consumption. For illustration, we take
GooglLeNet v1™ as a concrete example to illustrate the en-
ergy consumed by performing inference tasks. Specifically,
we use GoogleNet vl to perform image classification tasks
on the Eyeriss chip**). With the help of an energy estimation
online tool introduced in Ref. [41], we are able to visualize
the energy consumption breakdown of the GoogLeNet v1, as
illustrated in Fig. 2. We obtain the estimation of the compu-
tation power consumption via dividing the total energy con-
sumption by the computation time. In particular, the computa-
tion time is determined by the total number of multiplication-
and-accumulation (MAC) operations and the peak throughout
of Eyeriss chip.

Therefore, the overall power consumption for edge Al in-
ference, including transmission and computation power con-
sumption, is calculated as

Poverall(d7 {'Unk}) = Pyans (d {'Unk}) +Pcomp(d) =

Y, ZfllvnkHﬁZ Y B5. (6)

ne /Vkepcz/n neN ke,

B. Problem Formulation and Analysis

Note that there is a fundamental trade-off between trans-
mission and computation power consumption. To be specific,
more edge BSs performing the same task for MUs can sig-
nificantly reduce the transmission power by exploiting higher
transmit beamforming gains. However, this inevitably in-
creases the computation power consumption for performing
inference tasks. Therefore, the goal of an energy-efficient
edge inference system can be achieved by minimizing the
overall network power consumption to reach a balance be-
tween these two parts of power consumption.

Let {7} be the target SINR for MUs to receive the reliable
Al inference results in the downlink successfully. In our pro-
posed energy-efficient edge Al inference system, the overall
power minimization problem is thus formulated as

Poveran (<, {vy,
o{n{lg:k} ovel all( {U k})

st. SINRy(#) >y, Vk € X, )

>
Y vl <P, Vne s,
ket

where P;"* > 0 denotes the maximum transmit power of edge
BS n.

Unfortunately, problem (7) turns out to be a mixed
combinatorial optimization problem due to the presence of
combinatorial variable ./, which makes it computationally
intractable*. On the other hand, the nonconvex SINR con-
straints also pose troublesome challenges for solving (7). To
address these issues, we recast problem (7) into a tractable for-
mulation by inducing the group sparsity of the beamforming
vector in the following section.
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Figure 2 The estimated energy consumption breakdown!*!] of the
GoogLeNet vl to perform image classification tasks on the Eyeriss chip[43|

C. A Group Sparse Beamforming Representation
Framework

One naive approach to cope with the combinatorial vari-
able &7 is the exhaustive search. However, it is often com-
putationally prohibitive owing to the exponential complexity.
As a practical alternative, there is a critical observation that
such a combinatorial variable .2/ can be eliminated by ex-
ploiting the inherent connection between task selection and
the group sparsity structure of beamforming vectors. Specif-
ically, if the edge BS n does not perform the inference tasks
from MU & (i.e., k ¢ ), then it will not deliver the inference
result ¢ (dy) in the downlink transmission (i.e., v, = 0). In
other words, if k ¢ 7, all coefficients in the beamforming
vector v, are zero simultaneously. Mathematically, we have
Iy ={k | vy #0, k € '}, for all n € 4, meaning the task
selection strategy .7 can be uniquely determined by the group
sparsity structure of v,;. In this respect, the overall network
power consumption problem (7) can rewritten as

szll'vnkIIﬁZZH Ut £ 0)PS,. (8)

nlkl n=1k=1

Pﬂpar%e {vnk}

By considering the sparsity structure in the beamforming
vectors, the SINR expression (3) is transformed into

|Zn€.,/1/ hﬁlkvnk|2 _
Zl;ék | Xner hgkvnl 2+ sz
|l oe?
Yoz bl >+ o}

SINR; =

Vke X, )

where hy = [hlflk, e ,h%k]ﬂ and v, = [vlTk, e ,v;,kf are the
aggregated channel vector and downlink transmit beamform-
ing vector for MU £, respectively.

On the other hand, since an arbitrary phase rotation of
the transmit beamforming vectors {v,;} does not affect the
downlink SINR constraints and the objective function value,
we can always find proper phases to equivalently trans-
form the SINR constraints in (7) into convex second-order
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cone constraints'*!,  We thus have the following convex-
constrained sparse optimization framework for network power
minimization

min Psparse ({vnk })

{vm}

st ) vull3 < P, Vne N,
keH (10)

Y [Rlv? +0f <
1k

However, problem (10) is still nonconvex due to the indicator
function in the objective function. As presented in Proposi-
tion 1 in Ref. [29], a weighted mixed ¢} »-norm can be served
as the tightest convex surrogate of the objective in (10), i.e.,

R(hwvy), Vke 7.

P({vm}) = ZZ P,fk/nnankHI (11)
n=1k=1

In this paper, we instead propose to adopt a new group
sparsity inducing function for inference tasks selection via en-
hancing sparsity, thereby further reducing the network power
consumption.

III. A Los-SuM FUNCTION BASED
THREE-STAGE GROUP SPARSE
BEAMFORMING FRAMEWORK

In this section, we shall propose to adopt the log-sum func-
tion to enhance the group sparsity of the beamforming vector,
followed by describing the log-sum function based three-stage
GSBF approach. In particular, we propose a proximal itera-
tively reweighted algorithm to address the log-sum minimiza-
tion problem in the first stage.

A. Log-Sum Function for Enhancing Group Sparsity

Let v = [v]}, -, vfg, o5, ,ohk]T € CEVE denote
the aggregated beamforming vector v. To promote the group
sparsity for the beamforming vector vy, in this paper, we pro-
pose to use the following weighted nonconvex log-sum func-
tion as an approximation for the objective Psparse (V)

N K
= Z Z nklOg 1+P||'Unk|| ) (12)
n=1k=1

where px = /P, /N, > 01s a weight coefficient and p > 0 is
a tunable parameter. The main motivation for adopting such
a log-sum penalty among various types of sparsity-inducing
functions!?”) is based on the following considerations.

e The mixed ¢ >-norm is similar as an £;-norm of vector
v and thereof offers the tightest convex relaxation to the £y-
norm. In contrast to the mixed ¢ >-norm, it has been reported
that the log-sum function can significantly enhance the spar-

sity of the solution than the conventional /1-norm!?7-341,

e From the perspective of performance and theoretical
analysis of the designed algorithm, a log-sum function brings
more practicability due to its coercivity and boundedness of
its first derivative.

B. A Log-Sum Function Based Three-Stage Group
Sparse Beamforming Approach

We now present the proposed log-sum based three-stage
GSBF framework. Specifically, the first stage is to solve
the log-sum convex-constrained problem via the proposed
proximal iteratively reweighted algorithm to obtain a solution
Usparse; the second stage prioritizes the tasks in progress based
on the obtained solution vsparse and system parameters, fol-
lowed by obtaining the optimal task selection strategy .o/*;
with fixed «7*, we refine the v in the third stage. Details are
depicted as follows.

Stage 1: Log-Sum Function Minimization. In this first
stage, we obtain the group sparsity structure of beamformer v
by solving the following nonconvex program

min Q(v) s.t.

v

VETL, (13)

where % denotes the convex-constraints in (10).

However, the nonconvex and nonsmooth objective in (13)
and the presence of the convex constraints usually pose chal-
lenges in computation and analysis. Inspired by the work of
Ref. [34], we can iteratively minimize the objective by solving
a sequence of tractable convex subproblems. The main idea of
our presented algorithm is to solve a well-constructed convex
surrogate subproblem instead of directly solving the original
nonconvex problem.

Let f),(vnk) :=10g(1+4 p||v,||2). First observe that f,(v,)
is a composite function with z(v,) = ||vu|l2 convex and
fp(z) =log(1+ pzx) nonconvex. At the ith iterate 'v,[:,]{ for
any feasible 9,;, we have

fp(2(Bm)) <

T (14)

where wll € 9(f,(z(v H)))1sthesubgr.aldlentoff,,( )atz =

z(v H) and B > 0 is the prescribed proximity parameter, and
the first inequality holds by the definition of the subgradient of
the convex function. Hence, a convex subproblem is derived
as an approximation of f,(v,) at current iterate v,[;,]{ which
reads

|

) y "y [2
min Y Y wilowla+5 Y Y lvw—vyl3
70 s n=1lk=1 (15)

st. ve€
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Algorithm 1 A proximal iteratively reweighted algorithm for solving (13)

: Input: p >0, >0, IterMax and vl

- Initialization: w!®) = 1 and set i = 0.

: while not converge or not attain IterMax do

(Solve the reweighted subproblem for v[*1) Calculate I+ accord-
ing to (15).

A WN =

S: (Reweighting) Update weight w,[ll;( according to (16).
6: Seti«i+1.

7: end while

8: Output: vgprse = vl

with weights

Wl = o Oy (2(0l)) = —P%— (16)
Pl +1

As presented in Ref. [34], a smaller HU,[,IJ](HZ causes larger
wg;(, then drive the nonzero components of v,; towards zero
aggressively. Overall, to enhance the group sparsity structure
of the beamforming vector, the proposed proximal iteratively
reweighted algorithm is illustrated in Algorithm 1.

Stage 2: Tasks Selection. In this second stage, an order-
ing guideline is applied to determine the priority of inference
tasks, which is guided by the solution obtained in Stage 1.
For ease of notation, let . = {(n,k) |n € A",k € % } denote
the set of all tasks. By considering the key system parameters
(e.g., hy, P, and 1), the priority of task (n, k) is heuristically

given as
hlk
B = | Il ’”2"”” vl (17

Intuitively, if edge BS n is with a lower aggregative beam-
former gain, lower power amplifier efficiency, lower channel
power gain, but a higher computation power consumption for
MU &, task (n,k) has a lower priority. A lower 8, indicates
that the tasks from MU k have lower priority and may not be
performed by BS n. Thus, tasks are arranged in light of the
rule (17) with a descending order. That is, the task’s priority
is Oz, = Oy, -+ > Og,,, where 7 denotes the permutation of
task indexes.

We then solve a sequence of convex feasibility detection
problems to obtain the task selection strategy 7,

find v s.t. =0,veEF, (18)
where 7() = {m,1,---,myx} and ¢ increases from K to NK
until (18) is feasible. Here v () = 0 are convex constraints,
meaning that all v,;’s coefﬁ01ents are zeros for task (n,k) €
7). The support set of beamformer v is defined as .7 (v) =
{(n,k) | ||vnk|l2 # 0,n € A",k € X}, then the optimal task se-
lection strategy <7 * can be derived from .7 (v) = {my,--- ,m}.
Stage 3: Solution Refinement. At this point, we have de-
termined tasks selection for each BS. Then, after fixing the

Algorithm 2 A log-sum function based three-stage GSBF framework for
solving (7)

1: Stage 1: Log-sum function minimization. Call Algorithm 1 to obtain
Usparse -

: Stage 2: Tasks selection.

Sort 6,;’s in descending order by (17).

Sett =K.

: while not feasible do

(Determine the optimal task selection) Calculate (18) with a0 =

{Mig1, 77TNI(}~

Sett+t+1.

: end while

: Stage 3: Solution refinement.

: Refine {v,;} by solving (19).

: Obtain {v,; } and &7*.

AN

—_ =
— S © % =

obtained task index set, we solve the following convex pro-
gram to refine the beamforming vectors

min zz SIS 3 3

n=1k= n=1keq*
1}”(,)20,
vETF.

Overall, our proposed log-sum function based three-stage
GSBF framework for solving (7) can be presented in Algo-
rithm 2.

19)
s.t.

IV. GLOBAL CONVERGENCE ANALYSIS

In this section, we provide the global convergence for Al-
gorithm 1. Specifically, we derive the first-order necessary
optimality condition to characterize the optimal solutions. We
then establish convergence results for a subsequence of the se-
quence generated by Algorithm 1. Furthermore, we show that
for any initial feasible point, the entire sequence must have
cluster points, and any cluster point satisfies the established
first-order optimality condition. Finally, the ergodic worst-
case convergence rate of the optimality residual is derived.

A. First-Order Necessary Optimality Condition

In this subsection, we derive the first-order necessary con-
ditions to characterize the optimal solution of (13). Prob-
lem (13) is equivalently rewritten as

nl)in J(v) := Q(v) + 64 (v). (20)

Similarly, for the derived subproblem (15), we have

Zzw ol 2o~ 03 48, (v).

n=1lk=
(2D
Due to the nonconvex and nonsmooth nature of the log-
sum function, we make use of the Fréchet subdifferential as
the major tool in our analysis. Its definition is introduced as
follows.

m1n G(v; v[’]
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Definition 1 (Fréchet subdifferential®®!) Let 2 be a real
Banach space and Z™* denotes the corresponding topological
dual and f be a function from 2" into an extended real line
R =RU {+oo}, finite at . A set

i%f@jz{r*eﬂﬁ‘Mnmfﬂu)_fOO_@ﬁﬂi_r>20}

ur [u=7]}2

is called a Fréchet subdifferential of f at r. Its elements are
referred to as Fréchet subgradients.

Several important properties of the Fréchet sub-
differential?® are listed below, which are used to characterize
the optimal solution of (13).

Proposition 1 Let X be a closed and convex set. Then the
following properties on Fréchet subdifferentials hold true.

(i) If f is Fréchet subdifferentiable at  and attains local
minimum at x, then 0 € dp f ().

(ii) Let h(-) be Fréchet subdifferentiable at 7 = z(&) with
z(x) being convex, then o z(x) is Fréchet subdifferentiable
at & such that

y0z(&) C dphoz(Z)

for any y € dph(Z).
(iii) A% (x) = dr8x (x) with closed and convex sets X.

The following Fermat’s rule!*®! describes the necessary op-
timality condition of problem (13).

Theorem 1 (Fermat’s rule) If (20) attains a local minimum
at v, then it holds true that

0¢c 8FJ(1;) = 8FQ(v) +</%g('l)). (22)

We next investigate the properties of dr Q(v) in the follow-
ing Proposition 2, indicating that the Fréchet subdifferentials
of f,(-) at 0 are bounded.

Proposition 2  If v, # 0, then Y0 z(v,k) C IF fp 0 z(vy) for
any Y € dr f»(2). In particular, dr f, 0 2(0) is any element of
{yeCHllyl2 < p}-

To explore the behavior of the proposed proximal itera-
tively reweighted algorithm, based on Theorem 1 and Propo-
sition 2, we define the optimality residual associated with (20)
at a point vl as

il = wll o 2l 4yl (23)

where zl! € 9| vlllg, = [(9][v]} )T, (9| vykll2) "] and
ull € A (vl). Since 7l! € OpJ (vl), it implies that if ! =0
then vl! satisfies the first-order necessary optimality condi-
tion (22). We adopt rll to measure the convergence rate of
our algorithm.

Moreover, we provide the first-order optimality condition
of the subproblem (21) as follows

0 = 3G (v;vll) = Bl —pll) 4wl @ g+ 4],
(24)

where vl = argmin, G(v;vl1), 21 € 9||vl ||y, and
w1 e e (vlit1)). Note that the existence of optimal so-
lution to (21) simply follows from the convexity and the coer-
civity of the objective G(-;vl?).

Now we show that an optimal solution of (21) also satisfies
the first-order necessary optimality condition of (20) in the
following lemma.

Lemma 1 o[l satisfies the first-order necessary optimality
condition of (20) if and only if

vl = argmin G(v;v).
Proof Please refer to Appendix A).
Define the model reduction caused by v/ at a point vl
as

AGIH I wlly .= Gl vl — Gl ol (25)

The new iterate v*! causes a decrease in the objective
J(v), and this model reduction (25) converges to zero in the
limit, both results are revealed in the following Lemma 2.
Lemma 2 Suppose {vm o 1s generated by of Algorithm 1
with v[% € . The following statements hold true

(i) J(@H) —J(vll) < G(olH1;0l) — G(vll;0l]) <.
(if) }Lm G(vltwll) =0,

(iii) G(v;v!) is monotonically decreasing. Indeed,
AG(w;pl) > gllvm 2,

Proof Please refer to Appendix B).
We now provide our main result in the following Theo-
rem 2.

=

Theorem 2 Suppose {v[1}: is generated by Algorithm 1
with v/ € €. 1t holds true that {v!!} must be bounded and
any cluster point of {vm} satisfies the first-order necessary
optimality condition of (20).

Proof Please refer to Appendix C).

B. Ergodic Worst-Case Convergence Rate

In this subsection, we show that the presented proximal it-
eratively reweighted algorithm has O(1/t) ergodic worst-case
convergence rate in terms of the optimality residual. In the
following Lemma, it states that the optimality residual has an
upper bound with the displacement of the iterates.

Lemma 3 The optimality residual associated with prob-
lem (20) satisfies

7113 < (B2 +2Bxp* + k2p*) [0l — 1|12
with Kk = pmax!,

Ipmax denotes the maximum elements among [p,] foralln € A, k € A .
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Figure 3 Convergence of the proximal iteratively reweighted algorithm for
log-sum minimization problem

Proof Please refer to Appendix D).

The subproblem (21) is referred to as the primal problem,
and by exploiting the conjugate function!*®!, the associated
Fenchel-Rockafellar dual is constructed as

max O\, p;vll)
Motk (26)

st Al <1, Vne AN ke X,

where the dual objective is given as Q(X, u;vl) = *ﬁ IA®
w4 p— Boll |3+ %va 53— 8;(p), and the technical de-
tails to construct (26) is provided in Appendix E).

The Fenchel-Rockafellar duality theorem!*! states that the
solution to (26) provides a lower bound on the minimum value
to the solution of (21). Moreover, the gap between the primal
objective function value of (21) and the corresponding dual
objective function value of (26) at the ith iterate is defined as

(v A, pwoll) := Glosoll) — (A, pwsoll).  (@7)

If this gap g(v, A, u; v!) is zero, then the strong duality holds.
That is, at the optimal solution (vUH] A+ u[i+1]), we have

AG(U[i+1];U[i]) — g(’U[H-l],A[i+l]7u[i+l];v[i]). (28)

We now show that the duality gap vanish asymptotically in
the following Theorem.
Theorem 3 Let {v[i]};?"zo be the sequence generated by Al-
gorithm 1 with vl € €. Then ||r*1||3 has O(1/1) ergodic
worst-case convergence rate.
Proof Please refer to Appendix F).

V. NUMERICAL EXPERIMENTS

In this section, we use numerical experiments to validate
the effectiveness of our proposed algorithms and illustrate the
presented theoretical results. We compare the log-sum func-
tion based three-stage GSBF approach with the coordinated

beamforming (CB) approach®”! and mixed ¢, GSBF*’!
beamforming approach (Mixed ¢, GSBF). These two ap-
proaches are listed below.

e The CB approach considers minimizing the total trans-
mit power consumption. In other words, all BSs are required
to perform the inference tasks from all MUs.

e Mixed /1 » GSBF approach considers adopting the mixed
£1 2-norm (i.e., the objective function in (13) is replaced with

N YK Pukllvak]|2) to induce group sparsity of the beam-
forming vector in Stage 1 of Algorithm 2.

On the experimental set-up, we consider the edge Al in-
ference system with 8 2-antennas, and 15 single-antenna
MUs that all are uniformly and independently distributed in
a[—0.5,0.5] km x [—0.5,0.5] km square region. The channel
between BS 7 and MU k is set as iy = 10~ Ldw)/ 20¢, ., where
the path-loss model is given by L(d,) = 128.1 +37.61gd
and d, is the Euclidean distance between BS n and MU k, &,
is the small-scale fading coefficient, i.e., & ~ €-4(0,1I).
We set P, = 0.45 W and specify P"* =1 W, 1, = 25%
and O'k2 = 1. Furthermore, for the proposed log-sum function
based three-stage GSBF approach, we set p = 100, f = 0.1
and initialize w% = 1. In particular, we terminate the prox-
imal iteratively reweighted algorithm either it hits the prede-
fined maximum iterations IterMax = 25 or satisfies

i+1]

||'w[ mel <g, (29)

where € = 107 is a predescribed tolerance.

A. Convergence of the Proximal Iteratively Reweighted
Algorithm

The goal in this subsection is to illustrate the convergence
behavior of the proposed proximal iteratively reweighted al-
gorithm. The presented result is obtained in a typical channel
realization. Fig. 3 illustrates the convergence of the proxi-
mal iteratively reweighted algorithm. We can see that Q(v)
steadily decreases along with the iterations, which is consis-
tent with our analysis in Lemma 2. Interestingly, we observe
that the objective value of Q(wv) drops quickly in the first few
iterations (less 5 iterations), which indicates that the proposed
proximal iteratively reweighted algorithm converges very fast.
In view of this, we may suggest early terminating the Algo-
rithm 1 in practice to obtain an approximate solution to speed
up the entire algorithm while guaranteeing the overall perfor-
mance.

B. Effectiveness of the Proposed Approach

We evaluate the performance of the three algorithms in
terms of the overall network power consumption, the trans-
mit power consumption and the number of computation tasks.
The presented results are averaged over 100 randomly and in-
dependently generated channel realizations.
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Figure 4 Average total network power consumption comparison for three
different approaches in edge Al inference system

Fig. 4 depicts the overall network power consumption of
three approaches with different target SINRs. First, we ob-
serve that all three approaches have higher total power con-
sumption as the required SINR becomes more stringent. This
is because more edge BSs are required to transmit the infer-
ence results for higher QoS. In addition, we can see that the
CB approach has the highest power consumption among three
approaches and the relative power difference between the CB
and the other two approaches can achieve approximately 67%
when SINR is 2 dB and approximately 18% when SINR is 8
dB, indicating the effectiveness of joint task selection strat-
egy and group sparse beamforming approach to minimize the
overall network power consumption. On the other hand, we
can see that the proposed log-sum function based three-stage
GSBF approach outperforms the mixed ¢; » GSBF approach,
which demonstrates that enhancing the group sparsity further
reduces the overall network power consumption. In particular,
we also observe that the performance gap between the blue
and the red curve approximately remains at 9% when SINR
ranges from 4 dB to 8 dB, which indicates that the proposed
log-sum function based three-stage GSBF approach is still at-
tractive in the high SINR regime.

Tabs. 1 and 2 further demonstrate the number of inference
tasks performed by edge BSs and the transmission power con-
sumption, respectively. To be specific, in Tab. 1, we observe
that the number of performed inference tasks among three ap-
proaches is different under various SINRs, which shows the
existence of the task selection strategy. Besides, it is observed
that the log-sum function based three-stage GSBF approach
always achieves a less number of performed inference tasks
compared to the mixed ¢; » GSBF approach for target SINRs,
which indicates that the log-sum function based three-stage
GSBF approach can enhance the group sparsity pattern in the
beamforming vector. Meanwhile, as observed in Tab. 2, the
CB approach has the lowest transmission power compared

Table 1 The average number of performed inference tasks with different
approaches

Target SINR (dB) Proposed Mixed ¢1 » GSBF CB
0 16.49 17.79 120.00
2 21.00 22.50 120.00
4 30.08 34.47 120.00
6 43.57 52.17 120.00
8 67.76 77.36 120.00

Table 2 The total transmit power consumption with different approaches

Target SINR (dB) Proposed Mixed ¢; » GSBF CB
0 4.16 4.68 0.41
9.12 8.31 0.88
4 12.24 11.76 1.99
6 15.81 14.70 4.57
8 18.81 18.58 10.79

to the other two approaches because the CB approach only
optimizes the power consumption in transmission with per-
forming all inference tasks. On the other hand, the trans-
mission power consumption of the log-sum function based
three-stage GSBF approach is slightly higher compared to the
mixed ¢; > GSBF approach under most SINRs. This is be-
cause more edge BSs participate in performing inference tasks
in the mixed £; » GSBF approach, resulting in a higher trans-
mit beamforming gain for reducing transmission power. In
other words, less number of performed inference tasks further
reduces the computation power consumption of edge BSs but
increases the transmission power consumption. Observe the
Fig. 4 and Tabs. 1 and 2 together, it indicates that the pro-
posed joint task selection strategy and GSBF approach find
a good balance between computation power consumption and
transmission power consumption, yielding the lowest network
power consumption.

VI. CONCLUSION

In this paper, we developed an energy-efficient edge Al
inference system through the joint selection of the infer-
ence tasks and optimization of the transmit beamforming vec-
tors for minimizing the computation power consumption and
the downlink transmission power consumption, respectively.
Based on the critical insight that the inference tasks selection
can be achieved by controlling the group sparsity structure of
transmit beamforming vectors, we developed a group sparse
optimization framework for network power minimization, for
which a log-sum function based three-stage group sparse
beamforming algorithm was developed to enhance group spar-
sity in the solutions. To resolve the resulting nonconvex and
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nonsmooth log-sum function minimization problem, we fur-
ther proposed a proximal iteratively reweighted algorithm.
Furthermore, the global convergence analysis was provided,
and a worst-case O(1/r) convergence rate in an ergodic sense
has been derived for this algorithm.

APPENDIX

A) Proof of Lemma 1 Let :I:[i] € d|v|lg, and ull €
Nep (vl If vl! = argmin,, G(v;v!!), by (24), we have

0=wll @zl +ull. (30)

We conclude that vl satisfies (22), indicating that vl is first-
order optimal for (20).

Conversely, if vl satisfies (22), implying vl satisfies (30)
by Proposition 2. Thus »[] must be the optimal solution to the
subproblem (15). This completes the proof.

B) Proof of Lemma 2  First, /"' = argmin, G(v;v!!) and
G(v;v!7) is convex, so that G(vlit1;vll) — G(vll;0lT) <o0.
Since f,(+) is concave, we have,

Fo(2) < fo(20) + (Vfp(20), (2 — 20)), Vz,20 €RE. (31)

Therefore
J(v[i+1]) _ Q(v[iﬂ]) <
: N K [i+1] [i]
Q)+ Y Y wh (ol s — (v f]]2) +
n=1k=1
B ||vz+1 ol =

J(v”)—i—G(v[iH];v[i]) —G('vm;vm), (32)
where the first inequality follows from (31). This completes
the first statement (7).

On the other hand, by (32), we have

AGIH Ul < (0l — g (ol (33)

Summing both sides of (33) over i =0, ...,t, yielding

(01 <) -7,

t
0< ZAG(U[i+l];U[i]) <J)—J

i=0

(34
where J is the lower bound of J(-). Allowing ¢t — o, we have

lim AG(v1; 0y = 0. (35)

i—yoo
This completes the second statement (ii).
For the last statement (iii), inspired by the proof line pre-
sented in Ref. [37]. By (24), we have

0= B( [H—l [i])_’_:’t’[i-‘(-l]_’_u[i-‘v-l]’ (36)

where 21 € 9(wll [|[vl*1||4,), ull € Az (vll). Taking a
dot-product with (vl+1] — vl on both sides of (36) yields

0= Bl ol +
<u[i+1]7,v[l'+1] _ ’U[i]>. (37)

<5[i+1]’v[i+1] _ ,v[i]> +

By the definition of subgradient of the convex function, we
have,

~ o i) > @10l — ol =

(wl, vl7|g,
<u[i+1]7v[i+1]—v[i]>+
Bllot ! —ol|3. (38)

Therefore

Gl 0!y - Golt ;) =

C v [i+1] 1] i2

Y Y wik(loilz = o ) - w* oll|3 =
n=1lk=1

(wll o], — ([0l 1) — 4 Hv T — )3 >
<u[i+1]’,v[i+1] 7'1)[i]> + gHv[i-H 7'0[[.]”% _

gnv[z] _v[i+1]”% _ <u[i+1]’,u[i] _,v[i+1]> >

gllvm —ol3, (39)

where the first inequality is obtained by (38) and the last
inequality holds since ul*!l e ¢ (vl+1]), completing the
proof.

C) Proof of Theorem 2 By Lemma 2,
{J(v!)} is monotonically decreasing. Since J(-) is coer-
cive, we conclude that the sequence {'vm} is bounded. We
conclude that {v!} must have cluster points. Let v* be a
cluster point of {v!}. From Lemma 1, it suffices to show
that v* = argmin, G(v;v*). We prove this by contradic-
tion. Assume that there exists a point ¥ such that € :=
G(v*;v*) — G(B;v*) > 0. Suppose {vll} o, — v*, .7 CN.
Based on Lemma 2, there must exist k; > 0 such that for all
k>k ke s

the sequence

G(v[i];v[i]) —G(v [t+1] ) <e/d. (40)

Note that v[i] Z) 'v*k and w[i;( Z> w* i there exists ky such
that for all k > kp,k € Z, YN |y K lw[’] ||'vnk\|2 —willvnllz >

—£/10, and Bjv* =52 + X, 00wi — wiD) Bl — B 15 —

vll)3 > —¢/10.
Therefore, for all k > ky,k € .7,
G(v*;v*) — G(v;0l1) =

N K 5
Y)Y nkllvnkHz—va wll|j3 —

n=1k=1
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M=
M=

(Wi = (0=, [ 2 =
n=1k=1
Glo" )~ (0] + 50| +
N K ) ‘
Y Y O Bl B 5 ol >
n=1k=1
€—¢/10=9¢/10, 41

and that

)— G(vv") =

N K

Z Z Wil vl > —€/10. (42)

G
ii

Hence, for all k > max(k;,k;),k € ., it holds that

Wi llvikll2 -

G0l — G(#;0l) =
Gl vl — G(v*;0") + G(v*;v*) — G(#;v!) >
—&/10+9¢/10 =4¢/5, (43)
contradicting (40). Hence, v* = argmin, G(v;v*). By
Lemma 1, v* satisfies the first-order necessary optimality
for (20). This completes the proof.
D) Proof of Lemma 3 Recall the first-order necessary opti-

mality condition (24) of subproblem (15). By rearranging the
term, and we have

ol i1l %(w[z’] ©alt 4 ity (44)

where 21 € 9||vlit1||g, and wl*1) € A4 (vI*1]). Square
on both sides of (44), we have

Jofl — o+ =

1 4 . .
— [lwl? @ &l 4 i+ 13 =

ﬁZ
lel(w[z l+1])@$[1+1]+1"1+1 ||2

i+1 i+1] i+1]
ﬁzll( w1 gl ||2+l-),2H7’+ I3 +
2 i i i i
E((w”fw[“])@a:[“],r[*”):

i i+1 i+1](12 1 i+1]12
ﬁZH(w[ wH])®$[+]||2+EHTH]H2—
%«wm ity @ g+,

(,w[z] _w[i+1]) @.’B[i+1] _|_B(,U[i+1] —'U[i]» _

1 ; : . 1 ;
w24

B B
%«w[i] w1 @ glit1] 1] _ iy 45)

where we exploit ult!) = B(vll — vy — wll @ 2+ to

obtain the fourth equality. Then we have

)3 =
ﬁZH'U[i]_ [i+1]H2+H( [i+l])®$[i+l]”%+
2B<( H»l])@x[H»l] ,U[l+l] []> <
B ||’U[l]*’v'+1 13+ [lw!? — w13 +
ZﬁH('w[l] N w[H—l]) ®$[i+1] ”2”,0[1] _ ,U[H-l] HZ <
B2 o — ol 3 + [l — w13 +
2BHw[l] _,w[i+1] ”2”,0[1] _,U[iJrl] ||2 <
B2||vl! — vl )3 4 p i wl] — ol )3 +
2Bp* kol — ol |3 =
(B> +2Bxkp” + k2 p*)||vl] — o3, (46)

where the last inequality holds due to f)(-) is p?-Lipschitz
continuous and ¥ = p™®. This completes the proof.

E) Construction of Fenchel-Rockafellar Dual (26) This
construction of the dual program owes to the conjugate
function'®!, We first rewrite the objective G(v;vl!) by ex-
ploiting the conjugate function as

K

G Z SUP nkvvnk> - 5IB<)‘rll<)] +
n=1k=1 nk
guvfwﬂﬁ+wmuuwfayum @)

I

where B := {y € CL | ||y|| < 1} denotes the dual norm unit
ball of || - ||2. Then the primal subproblem (21) is simply

mfG(v vl = infsup Z Zw Moy Bonie) — OB (Ani)] +
Y A pa=lj=
gﬂv*vmﬁ*%uﬂ&*d%u) @)

Swapping the order of inf and sup gives the corresponding
Lagrangian dual, i.e.,

Suplgf Z Z W nk;vnk SB(Ank)} +
n=1n=
%m—vW@+mnﬁ—%mn. )

The dual objective at v!"! is then given by

O(A\, ;v [’] = inf Z Zw

Y on=lk=1

2 ool + (v -

S]B(Ank)} +

nku vnk

55(n).  (50)

By exploiting the first-order necessary optimality condition
of (50), we have

0z () —

sup — 5 o3~

1 . .
— (A w4+ p— ol 2—1—
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N K
Y Y wi 8s (M), (51)
n=1k=1

which is consistent with the presented Fenchel-Rockafellar
in (26). This completes the construction.
F) Proof of Theorem 3 We evaluate g(v,z,w;vll) at vl
with Al € 9||vlit!||y, and pl*l) € A% (vlF1]). Then, we
have
g(v Ali] ’“[H—l];,v[i]) _

G(vll vy — QA plit 1] 11y =
Y & (i N B2
Y Y wikllellll +8e(olh) — 2ol 3 +

n=1k=1

A ]+ 1 — Bl 4 85 (1) >

1
ﬁ
ﬁ wT X 4 )24 (wl ol || — vl @AY 4

1 4 . .
ﬁ”w[l] @A[l“"l] +N[l+l]||%, (52)

where the first inequality holds due to the Fenchel-Young
inequality and the second inequality is obtained since
AU, < 1 makes [|[oll]g, — vl @ AF1 > 0.

Next, by making use of (24) to replace p*1 with (vl —

vl —wll @ A+ in (52), we have
Lme O 4 it =
2[3 Lot oAb i) 4 (apld) gl 1) o X2 =
ﬁ(llr S 4 [l (wl? =l 1) @ AFHIS +
2<r[i+1], (w[i] _w[i+1]) @)\[Hl])) _
35— 5wl =) @ AP

<,U[i+1] . ’U[i], (,w[t] . w[i+l]) @A[i+1]> >

1 . . . .

2 I o — o ot — e, —

1 4 .

*ﬁHw[l] — w3, (53)

where we exploit Cauchy-Bunyakovskii-Schwarz (CBS) in-
equality to obtain the last inequality.
On the other hand, by strong duality, we have

2wl A i1 iy = Gl Y — Glolt s pld). (54)

Combine (52), (53) and (54), we have
I3 <

ZﬁAG(le];v[‘

1)+ luoll — w3 +

2B [0l — ol | 3wl — w1, <
2BAG (1wl 4 12 pHwl! — ol |3 4
2Bkp? ol — ol 13 <

2BAG(I 0l 4 (12 p* 4 2Bxp?) [0l — 013 <

ZﬁAG(U[H—I];U[i])Jr%(K2p4+2BK.p2)AG(v[i+1];v[i]) <

g(ﬁ2+2ﬁ’<p2+K2p4)AG(,U[i+1];,U[i]) <

B

2

5B 2By’ +icp!

where the fourth inequality holds due to Lemma 2 (ii).
Summing up both sides of above inequality from i =0to t,

we have

) () —J (@), (55)

!
2 Z ”,,, 1+1]H2

i=0
t min P13 (56)
i=0 t

=0,

C(J(,U[O]) J 1‘+1

with C = 2(B2 +2Bxkp> + x*p*)/B. This indicates that

I < S —" ) <

/(")

1
o (t) . (58)

min ||r
=0, 1

= ~10

—J(v*)). (57)

Hence

; i+1])2 —
l,zrg}p’tllr 12

This completes the proof.
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