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Abstract—Reconfigurable intelligent surface (RIS) as an
emerging cost-effective technology can enhance the spectral- and
energy-efficiency of wireless networks. In this article, we consider
an RIS-aided green edge inference system, where the infer-
ence tasks generated from resource-constrained mobile devices
(MDs) are uploaded to and cooperatively performed at multiple
resource-enhanced base stations (BSs). Taking into account both
the computation and uplink/downlink transmit power consump-
tion, we formulate an overall network power consumption
minimization problem, which calls for the joint design of the
set of tasks performed by each BS, uplink/downlink beamform-
ing vectors of BSs, transmit power of MDs, and uplink/downlink
phase-shift matrices at the RIS. However, the resulting combina-
torial optimization problem is nonconvex and highly intractable.
We tackle the challenge of combinatorial variables by exploit-
ing the group sparsity structure of the beamforming vectors.
Moreover, a block-structured optimization with mixed ℓ1,2-
norm and difference-of-convex-functions (DC) based three-stage
framework is proposed to solve the problem, where the mixed
ℓ1,2-norm and DC techniques are adopted to induce the group
sparsity structure and handle the nonconvex rank-one constraint,
respectively. Simulations demonstrate the supreme performance
gain of deploying an RIS and confirm the effectiveness of the
proposed algorithm over the baseline algorithms in reducing the
overall network power consumption.

Index Terms—Reconfigurable intelligent surface, joint
uplink and downlink, green edge inference, block-structured
optimization, difference-of-convex programming.
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I. INTRODUCTION

BENEFITING from the availability of big data, recent years
have witnessed the prosperity of deep neural network

(DNN), which is a branch of artificial intelligence (AI) tech-
niques and has demonstrated its superiority in a variety of
intelligent applications (e.g., computer vision and natural lan-
guage processing). Thanks to its strong representation ability,
DNN has been adopted to promote the development of wire-
less communications and bring convenience to the system
implementation in various aspects such as interference man-
agement [2]–[3]. On the other hand, wireless communications
can promote AI as well, by analyzing the rich data generated
by the ever-increasing number of mobile devices (MDs) and
thus providing intelligent services for the MDs. With the MDs
at the network edge generating 77 exabytes data per month
by 2022 [4], the demand of performing inference tasks (e.g.,
object recognition and machine translation) is anticipated to
be ubiquitous, especially in the next generation AI-powered
wireless networks [5]. Driven by this trend, it is urgent to push
traditional cloud-based DNN models to the network edge so
as to unleash the potentials of edge data and in turn provide
intelligent services [6]. One possible architecture to perform
inference tasks is on-device inference, i.e., running DNN mod-
els directly on MDs. While the model compression [7], model
selection [8], and hardware acceleration [9] are proposed as
promising techniques to help devices run small-sized DNN
models, deploying powerful models with millions of parame-
ters is still challenging because of both the memory and battery
limitations [10].

By leveraging edge computing [11] and deploying DNN
models at the edge base stations (BSs) that have strong com-
putational capacity and large storage resources, edge inference
stands out as a promising paradigm to provide intelligent
services for MDs [12]. To accomplish the inference tasks,
the MDs upload the task-specific data to the BSs and sub-
sequently the BSs deliver the inference results after finishing
the inference process. Tailored for latency-critical applica-
tions, the authors in [13] and [14] respectively proposed
device-edge and edge-cloud synergy frameworks to parti-
tion DNN model parameters based on network dynamics to
minimize the execution latency. As energy efficiency is a
key performance indicator for edge inference systems, the
authors in [15] and [16] proposed energy-aware approaches
to prune DNN models to minimize the computation power
consumption (i.e., power required for the BSs to perform
the inference tasks) while maintaining reasonable inference
precision. However, the communication power consumption
was not considered in [15] and [16]. The authors in [17]–[18]

2473-2400 c⃝ 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 02,2021 at 13:12:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7499-6256
https://orcid.org/0000-0002-1360-8141
https://orcid.org/0000-0002-1418-7465
https://orcid.org/0000-0002-5727-5166


HUA et al.: RECONFIGURABLE INTELLIGENT SURFACE FOR GREEN EDGE INFERENCE 965

proposed to minimize the sum of computation and downlink
transmit power consumption (i.e., power required for the BSs
to deliver inference results to the MDs), while the uplink trans-
mit power (i.e., power required for the MDs to upload data to
the BSs) was neglected. However, in edge inference systems,
the traffic load in the uplink (e.g., raw images for an object
recognition task) is usually comparable to that in the downlink
(e.g., labeled images), resulting in high uplink transmit power
consumption. Therefore, it is imperative to develop new tech-
niques to reduce both the uplink and downlink transmit power
consumption and in turn facilitate an energy-efficient design
for edge inference systems.

Recently, a growing line of works focused on an emerg-
ing technology named reconfigurable intelligent surface
(RIS) [19], which has the potential to significantly reduce
the power consumption [1], [20] and improve the energy effi-
ciency [21]. RIS is also envisioned as a key enabler to provide
broadband connectivity for the future 6G systems [22]. In par-
ticular, an RIS is a low-cost planar array consisting of a large
number of passive reflecting elements with reconfigurable
phase shifts, each of which can be dynamically tuned via a
software controller to reflect the incident signals [23]–[24].
These elements consume negligible energy due to their passive
nature. By adaptively adjusting the phase shifts of reflect-
ing elements, an RIS can combine the constructive signals
and suppress the interference, thereby greatly enhancing the
performance of wireless systems [25]–[26]. By jointly opti-
mizing the beamforming vectors at the BS and the phase-shift
matrix at the RIS, deploying an RIS has the potential to reduce
the power consumption in various applications, e.g., down-
link unicast [20] and broadcast [27] settings, non-orthogonal
multiple access [28], and simultaneous wireless information
and power transfer [29]. The authors in [30] investigated RIS-
aided over-the-air computation to minimize signal distortion.
To reduce the complexity of dynamic phase configuration
for the RIS, the authors in [31]–[32] proposed deep learn-
ing methods to learn the mapping between the locations of
transceivers and the optimal phase shifts. In terms of power
consumption, all the aforementioned works only considered
the downlink transmit power consumed by the BSs. However,
in edge inference systems, the computation power consump-
tion is an indispensible component and should be taken into
account to accurately characterize the overall network power
consumption. In addition, it is essential to optimize both the
uplink and downlink phase-shift matrices of the RIS to assist
both the uplink and downlink data transmissions. These two
key issues make the approaches proposed in the existing works
not applicable to RIS-aided edge inference systems.

To guarantee the quality of intelligent services provided for
MDs, computation replication [33] allows each inference task
to be performed by multiple BSs and creates multiple copies of
the inference results at different BSs. These copies enable coop-
erative downlink transmission among the BSs on delivering the
inference results. In terms of the power consumption, however,
cooperative transmission and computation replication conflict
with each other. Specifically, cooperative transmission reduces
the downlink transmit power consumption by exploiting a
higher beamforming gain, while computation replication rapidly

increases the computation power consumption by repeatedly
running the same DNN model for multiple times. Therefore, it
is necessary to strike a balance between the computation and
communication power consumption via appropriately selecting
inference tasks to be performed by each BS and in turn achieve
green edge inference, which motivates this work.

In this article, we consider an RIS-aided green edge infer-
ence system with multiple BSs cooperatively performing
inference tasks for multiple MDs, taking into account both
the uplink and downlink transmit power consumption as
well as the computation power consumption. Our objective
is to minimize the overall network power consumption sub-
ject to prescribed quality-of-service (QoS) requirements, by
jointly designing the task selection strategy, transmit/receive
beamforming vectors of the BSs, the transmit power of
the MDs, and the uplink/downlink phase-shift matrices at
the RIS. However, the formulated problem is a combinato-
rial optimization problem with nonconvex constraints and is
highly intractable. The main contributions of this article are
summarized as follows

• We propose a joint design of the task selection strategy,
transmit/receive beamforming vectors, transmit power,
and uplink/downlink phase-shift matrices for an RIS-
aided green edge inference system. To the best of our
knowledge, this is the first attempt to unify beamforming
vectors, transmit power, and phase shifts design in both
the uplink and downlink transmission into a general edge
inference framework.

• The combinatorial nature of the task selection strat-
egy and the coupled optimization variables stand out
as two major challenges. We address the challenge of
the combinatorial variables by exploiting the group spar-
sity structure of the beamforming vectors, and tackle
the challenge of the coupled variables by proposing a
block-structured optimization (BSO) approach.

• With fixed phase shifts, we adopt the weighted mixed
ℓ1,2-norm to induce the group sparsity of beamform-
ing vectors. With fixed beamforming vectors and trans-
mit power, the original problem is transformed to a
homogeneous quadratically constrained quadratic pro-
gramming (QCQP) with a nonconvex rank-one constraint.
As the widely adopted semidefinite relaxation (SDR)
technique incurs performance degradation when the num-
ber of reflecting elements is large, we propose a novel
difference-of-convex-functions (DC) representation for
this nonconvex constraint, followed by developing an
effective DC algorithm. We then propose a BSO with
mixed ℓ1,2-norm and DC based three-stage framework to
solve the problem.

• Through extensive simulations, we show that the deploy-
ment of an RIS can significantly reduce the over-
all network power consumption of edge inference
systems. Furthermore, the proposed BSO with mixed
ℓ1,2-norm and DC algorithm achieves a significant
performance improvement compared to the BSO with
mixed ℓ1,2-norm and SDR algorithm, which demon-
strates the effectiveness of DC in yielding the rank-one
solutions.
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Fig. 1. RIS-aided edge inference system with N BSs collaboratively serving
K MDs with the assistance of an RIS deployed on the facade of a building.

The remainder of this article is organized as follows.
We present the system model and problem formulation in
Section II. A BSO approach is developed in Section III to
decouple optimization variables. We propose a three-stage
framework in Section IV. Simulation results are illustrated in
Section V. Finally, Section VI concludes this article.

Notations: We use boldface lower-case (e.g., h) and upper-
case letters (e.g., G) to represent vectors and matrices, respec-
tively. The transpose, conjugate transpose, trace operator and
diagonal matrix are denoted as (·)T, (·)H,Tr(·) and diag(·),
respectively. The symbols | · | and R(·) denote the mod-
ulus and the real component of a complex number. The
n × n identity matrix is denoted as I n . The complex nor-
mal distribution is denoted as CN. The inner product of two
matrices X and Y is denoted as ⟨X ,Y ⟩, which is defined as
⟨X ,Y ⟩ = Tr(XHY ). The ℓ2-norm of a vector is denoted as
∥ · ∥2. The spectral norm and Frobenius norm of a matrix are
denoted as ∥ · ∥ and ∥ · ∥F , respectively. The i-th largest sin-
gular value of matrix X is denoted as σi (X ). We use 1{·} to
denote the indicator function which outputs 1 if the condition
· is satisfied, and outputs 0 otherwise. In the rest of this arti-
cle, the superscripts UL and DL refer to uplink and downlink,
respectively, and the letters d and r in the subscripts stand for
the direct link and the reflected link, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and the
power consumption model for performing inference tasks at
the network edge, followed by formulating an overall network
power consumption minimization problem for green edge
inference systems.

A. System Model

We consider an RIS-aided edge inference system, where N
Ln -antenna BSs distributed in a small-cell network collabora-
tively serve K single-antenna MDs with the assistance of an
M-element RIS deployed on the facade of a building, as shown
in Fig. 1. Let N = {1, . . . ,N }, K = {1, . . . ,K}, and M =
{1, . . . ,M } denote the index sets of BSs, MDs, and reflecting
elements, respectively. The BSs are resource-enhanced with
strong computation and storage capabilities [34]. Each MD has

an inference task (e.g., image recognition) to be processed by
a task-specific DNN model (e.g., AlexNet [35]). Specifically,
the DNN model denoted as φk takes MD k’s local data dk
(e.g., raw images) as input and generates the inference result
φk (dk ) (e.g., labeled images) as output. As it is impractical
to run DNN models on resource-constrained MDs, we in this
article propose to upload the inference tasks of the MDs to
be performed at the BSs. We assume that all the BSs have
downloaded the pre-trained DNN models from cloud servers in
advance, therefore they can perform tasks for all the MDs [17].

The overall process of accomplishing the inference tasks in
the edge inference system is composed of the following three
phases.

• Uplink Transmission: The MDs upload the collected input
data {dk , k ∈ K} to the BSs.

• Inference Computation: The BSs feed data (e.g., dk ) into
a specific pre-trained DNN model (e.g., φk ) according to
the task type and then obtain the inference results (e.g.,
φk (dk )).

• Downlink Transmission: The BSs deliver the inference
results {φk (dk ), k ∈ K} to the corresponding MDs.

By exploiting the broadcast nature of wireless channels,
each MD’s data can be successfully received by multiple BSs
in the uplink, enabling computation replication and creating
multiple copies of the inference results at different BSs [33].
In the downlink, the BSs performing the same inference
task cooperatively transmit the inference results to the cor-
responding MD. By exploiting the existing channel estimation
approaches [36], we assume that the global channel state
information (CSI) is available at the BSs as in [27]–[29]. Let
An ⊆ K denote the set of MD indices whose inference tasks
are selectively performed by BS n, and A = (A1, . . . ,AN )
denote the task selection strategy. We adopt the time-division
duplex (TDD) mode to separate the uplink and downlink
transmissions.

1) Uplink Transmission: Let sUL
k ∈ C denote the repre-

sentative information symbol of input data dk , and pUL
k ∈ R

denote the transmit power of MD k. Without loss of generality,
{sUL

k , k ∈ K} are assumed to have zero mean and unit power.
The signal received at BS n can be expressed as

yUL
n =

∑

k∈K
gUL

nk

√
pUL
k sUL

k + zUL
n , ∀n ∈ N, (1)

where gUL
nk ∈ CLn×1 is the equivalent baseband channel

response from MD k to BS n and zUL
n ∼ CN(0,σ2

nILn ) is
the additive white Gaussian noise (AWGN) at BS n with σ2

n
being the noise power. With the deployment of an RIS, the
equivalent baseband channel from MD k to BS n consists of
both the direct link and the reflected link, where the reflected
link is a concatenation of the MD-RIS link, the phase shifts at
the RIS, and the RIS-BS link [20], [27]–[29]. Therefore, gUL

nk
can be modeled as

gUL
nk = hUL

d,nk︸ ︷︷ ︸
direct link

+
(
GUL

n

)H(
ΘUL

)H
hUL

r,k
︸ ︷︷ ︸

reflected link

, (2)

where hUL
d,nk ∈ CLn×1, hUL

r,k ∈ CM×1, and GUL
n ∈ CM×Ln

denote the channel responses from MD k to BS n, from MD k
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to the RIS, and from the RIS to BS n, respectively. In addition,
ΘUL = β diag(θUL

1 , . . . , θUL
M ) ∈ CM×M denotes the diago-

nal phase-shift matrix for uplink transmission, where β ∈ [0, 1]
is the amplitude reflection coefficient and θUL

m = ejϕUL
m with

ϕUL
m ∈ [0, 2π) being the uplink phase shift of the m-th reflect-

ing element of the RIS. The reflected link only accounts for
one-time reflection, because the power of signals reflected
by two or more times is negligible due to the high path
loss [20], [27]–[29].

We consider the linear beamforming strategy, and denote the
receive beamforming vector of BS n to decode sUL

k as vUL
nk ∈

CLn×1. BS n only decodes MD k’s transmitted symbol sUL
k

if k ∈ An . The estimated symbol at BS n for MD k ∈ An ,
denoted by ŝUL

nk ∈ C, is given by

ŝUL
nk =

(
vUL

nk

)H
yUL

n =
(
vUL

nk

)H
gUL

nk

√
pUL
k sUL

k

+
(
vUL

nk

)H ∑

l ̸=k

gUL
nl

√
pUL
l sUL

l +
(
vUL

nk

)H
zUL

n . (3)

The uplink signal-to-interference-plus-noise ratio (SINR)
observed at BS n for MD k is

SINRUL
nk =

pUL
k

∣∣∣
(
vUL

nk

)H
gUL

nk

∣∣∣
2

∑
l ̸=k pUL

l

∣∣∣
(
vUL

nk

)H
gUL

nl

∣∣∣
2

+ σ2
n

∥∥vUL
nk

∥∥2
2

,

∀ k ∈ An , n ∈ N. (4)

2) Downlink Transmission: After performing the inference
tasks, the BSs cooperatively transmit the inference results
{φk (dk ), k ∈ K} to the corresponding MDs through down-
link wireless channels. Let sDL

k ∈ C denote the representative
symbol of φk (dk ) intended for MD k and vDL

nk denote the
downlink beamforming vector from BS n to MD k. Without
loss of generality, {sDL

k , k ∈ K} are assumed to have zero
mean and unit power. The signal transmitted by BS n, denoted
as xDL

n ∈ CLn×1, is a summation of beamformed symbols for
MD k ∈ An , i.e., xDL

n =
∑

k∈An
vDL

nk sDL
k , ∀n ∈ N. The

signal received by MD k can be expressed as

yDL
k =

∑

n∈N

(
gDL

nk

)H
xDL

n + zDL
k

=
∑

n∈N

(
gDL

nk

)H

×

⎛

⎝1{k∈An}v
DL
nk sDL

k +
∑

l∈An , l ̸=k

vDL
nl sDL

l

⎞

⎠ + zDL
k

=
∑

n∈N
1{k∈An}

(
gDL

nk

)H
vDL

nk sDL
k

+
∑

l ̸=k

∑

n∈N
1{l∈An}

(
gDL

nk

)H
vDL

nl sDL
l + zDL

k ,

∀ k ∈ K, (5)

where zDL
k ∈ C is the AWGN at MD k with zero mean and

power σ2
k , and (gDL

nk )H ∈ C1×Ln is the equivalent downlink
channel response from BS n to MD k. Similar to the uplink

counterpart, (gDL
nk )H can be modeled as

(
gDL

nk

)H
=

(
hDL

d,nk

)H

︸ ︷︷ ︸
direct link

+
(
hDL

r,k

)H
ΘDLGDL

n
︸ ︷︷ ︸

reflected link

, (6)

where (hDL
d,nk )H ∈ C1×Ln , (hDL

r,k )H ∈ C1×M , and GDL
n ∈

CM×Ln denote the channel responses from BS n to MD k,
from the RIS to MD k, and from BS n to the RIS, respectively,
and ΘDL = β diag(θDL

1 , . . . , θDL
M ) ∈ CM×M is the downlink

phase-shift matrix with diagonal entries θDL
m = ejϕDL

m and
ϕDL

m ∈ [0, 2π). Although channel reciprocity is often assumed
to hold in TDD systems, we consider a general case, where
the channel responses in the uplink and downlink can be dif-
ferent. Based on (5), the SINR observed by MD k ∈ K in the
downlink is given by

SINRDL
k =

∣∣∣
∑

n∈N 1{k∈An}
(
gDL

nk

)H
vDL

nk

∣∣∣
2

∑
l ̸=k

∣∣∣
∑

n∈N 1{l∈An}
(
gDL

nk

)H
vDL

nl

∣∣∣
2

+ σ2
k

=

∣∣∣
∑

n∈N
(
gDL

nk

)H
vDL

nk

∣∣∣
2

∑
l ̸=k

∣∣∣
∑

n∈N
(
gDL

nk

)H
vDL

nl

∣∣∣
2

+ σ2
k

, (7)

where the second equality holds because BS n does not
transmit data to MD k by setting vDL

nk = 0 if k /∈ An .

B. Power Consumption Model

As running DNN models often incurs high energy consump-
tion due to their high computational complexity [37]–[38] and
energy-efficiency is one of the key performance indicators
for green communications [39], we in this subsection present
the power consumption model of the proposed edge inference
system, taking into consideration both the computation power
for inference and the communication power for uplink and
downlink transmissions.

1) Computation Power Consumption: We denote the power
consumption of performing MD k’s inference task at BS n as
Pc

nk . Therefore, the total computation power consumption at
all BSs is given by Pcomp(A) =

∑
n∈N

∑
k∈An

Pc
nk . It is

worth noting that the majority of the computation power is
consumed for running DNN models, which can be estimated
by using the energy estimation methodology proposed in [37].
This methodology provides a layer-wise energy breakdown for
arbitrary neural networks. In particular, the DNN configura-
tions (e.g., number of filters, number of input feature maps)
are taken as inputs and the normalized layer-wise consump-
tions energy of the neural network (i.e., normalized by the
energy consumption per multiply-and-accumulation (MAC)
operation) are generated as outputs [40]. The computation time
can be calculated via dividing the number of MAC opera-
tions by the average throughput of a CPU chip. Therefore, the
power consumption for performing an inference task equals
to the total energy consumption divided by the corresponding
computation time.

For example, the energy consumption of running AlexNet to
process one image on a well-designed energy-efficient Eyeriss
chip can be approximated by that of performing 4×109 MAC
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operations, or equivalently 0.45 W when the chip is at core
supply voltage 1.2 V [41]. As the typical value of computation
power Pc

nk (e.g., 0.45 W) is comparable to the BSs’ transmit
power (e.g., 1 W [42]), it is necessary to take into account both
the computation and transmit power to facilitate the energy-
efficient design.

2) Communication Power Consumption: The communica-
tion power consumption consists of the power consumed
by the MDs in the uplink transmission and by the BSs in
the downlink transmission. According to (2)-(7), the total
uplink transmit power consumption is

∑
k∈K pUL

k , while the
downlink transmit power consumption of BS n is given by
E[

∑
k∈An

∥vDL
nk sDL

k ∥
2
2] =

∑
k∈An

∥vDL
nk ∥

2
2, where E[ · ]

denotes the expectation. Therefore, the total communication
power consumption for both uplink and downlink transmis-
sions is given by Pcomm(A, {pUL

k }, {vDL
nk }) =

∑
k∈K pUL

k +∑
n∈N

∑
k∈An

1
ηn
∥vDL

nk ∥
2
2, where ηn is the drain efficiency

coefficient of the radio frequency power amplifier of BS n.
In summary, the overall network power consumption, con-

sisting of both the computation and communication power
consumption, can be expressed as

Ptotal

(
A,

{
pUL
k

}
,
{
vDL

nk

})

= Pcomm

(
A,

{
pUL
k

}
,
{
vDL

nk

})
+ Pcomp(A)

=
∑

k∈K
pUL
k +

∑

n∈N

∑

k∈An

1
ηn

∥∥∥vDL
nk

∥∥∥
2

2
+

∑

n∈N

∑

k∈An

Pc
nk .

(8)

It is worth noting that the static power consumption of the
BSs (proportional to N) and that of the RIS (proportional
to M) are not included in Ptotal and regarded as constants,
because they do not vary with the optimization variables and
are neglectable compared to computation and communication
power consumption.

C. Problem Formulation and Analysis

In the proposed edge inference system, there exists a funda-
mental tradeoff between the communication and computation
power consumption. Specifically, with computation replica-
tion, more BSs performing the same task reduces the downlink
transmit power consumption by exploiting a higher cooperative
beamforming gain, at the cost of increasing the computa-
tion power consumption. Therefore, we propose to achieve
green edge inference by minimizing the overall network
power consumption via striking a good balance between the
communication and computation power consumption.

Let {γUL
k , k ∈ K} and {γDL

k , k ∈ K} denote the SINR
thresholds required to successfully receive the input data
and inference results in the uplink and downlink, respec-
tively. Given a task selection strategy A, the network power
consumption minimization problem is formulated as

P (A) : minimize
ΘUL,ΘDL

{vUL
nk },{vDL

nk },{pUL
k }

Ptotal

(
A,

{
pUL
k

}
,
{
vDL

nk

})

subject to SINRDL
k ≥ γDL

k , ∀ k ∈ K,

(9a)

SINRUL
nk ≥ γUL

k ,

∀ k ∈ An , n ∈ N, (9b)
∑

k∈An

∥∥∥vDL
nk

∥∥∥
2

2
≤ PDL

n,max,

∀n ∈ N, (9c)

pUL
k ≤ PUL

k ,max, ∀ k ∈ K,

(9d)∣∣∣θUL
m

∣∣∣ =
∣∣∣θDL

m

∣∣∣ = 1,

∀m ∈M, (9e)

vUL
nk = vDL

nk = 0,

∀ k /∈ An ,n ∈ N, (9f)

where PUL
k ,max and PDL

n,max denote the maximum transmit
power of MD k and BS n in the uplink and downlink,
respectively, and (9f) are the group sparsity constraints of
beamforming vectors. Specifically, if k /∈ An , BS n does not
decode MD k’s data in the uplink (i.e., vUL

nk = 0) and sub-
sequently cannot transmit inference results to MD k in the
downlink (i.e., vDL

nk = 0).
As A is a variable to be designed, we need to search over all

possibilities of A to obtain the optimal task selection strategy
A⋆. Therefore the overall optimization problem is given by

P original: minimize
A1⊆K,...,AN⊆K

p⋆(A) (10)

where p⋆(A) is the objective value of problem P (A).
In order to solve problem P original, we are confronted

with several main challenges. As set K has 2K different sub-
sets, A has a total of 2KN different possibilities, making
it apparently impractical to search over all the possibilities.
Despite of the troublesome variable A, the coupled con-
tinuous variables phases shifts and beamforming vectors in
constraints (9a)-(9b) pose a unique challenge. Moreover, the
unit-modulus constraint (9e) imposed by the phase-shift of
each RIS element is nonconvex. In the following, we shall
exploit the group sparsity structure of beamforming vectors to
get rid of the combinatorial variable A in problem P original,
thereby facilitating efficient algorithm design.

III. BLOCK-STRUCTURED OPTIMIZATION APPROACH

In general, the combinatorial optimization problem
P original is hard to tackle. Fortunately, based on the key
observation that the task selection strategy A has an intrinsic
connection with the group sparsity structure of beamform-
ing vector vnk = [(vUL

nk )T, (vDL
nk )T]T, we can eliminate the

troublesome variable A. Specifically, all coefficients in the
beamforming group vnk are zero simultaneously if k /∈ An .
In other words, we have k /∈ An ⇔ vnk = 0 and k ∈ An ⇔
vnk ̸= 0. Therefore, the overall network power consumption
given in (8) can be equivalently rewritten as

Ptotal

({
pUL
k

}
,
{
vDL

nk

})
=

K∑

k=1

pUL
k +

N∑

n=1

K∑

k=1

1
ηn

∥∥∥vDL
nk

∥∥∥
2

2

+
N∑

n=1

K∑

k=1

1{vnk ̸=0}P
c
nk . (11)
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Fig. 2. Overview of the proposed three-stage framework for problem
P original.

As multiple tasks may not be performed by a specific BS, the
aggregated beamforming vector v ∈ CK

∑N
n=1 Ln defined as

v = [vT
11, . . . , v

T
1K , . . . , vT

N1, . . . , v
T
NK ]T is expected to have

the group sparsity structure with only a few non-zero blocks.
The above discussions indicate that we do not have to

explicitly optimize the task selection strategy A. Instead, A
can be determined by the group sparsity pattern of the beam-
forming vectors, i.e., An = {k |vnk ̸= 0, k ∈ K}, ∀n ∈ N.
Therefore, we propose to solve problem P original based
on the following three stages. In Stage 1, we presume that
each BS performs inference tasks for all the MDs (i.e.,
An = K,∀n ∈ N), and solve the following group sparse
beamforming problem to obtain the initial group sparse beam-
forming vectors, which indicate the group sparsity structure of
the optimal beamforming vectors

P : minimize
ΘUL,ΘDL

{vUL
nk },{vDL

nk },{pUL
k }

Ptotal

({
pUL
k

}
,
{
vDL

nk

})

subject to SINRDL
k ≥ γDL

k , ∀ k ∈ K, (12a)

SINRUL
nk ≥ γUL

k , ∀n ∈ N, k ∈ K,

(12b)
K∑

k=1

∥∥∥vDL
nk

∥∥∥
2

2
≤ PDL

n,max,

∀n ∈ N, (12c)

pUL
k ≤ PUL

k ,max, ∀ k ∈ K, (12d)
∣∣∣θDL

m

∣∣∣ = 1, ∀m ∈M, (12e)

|θUL
m | = 1, ∀m ∈M. (12f)

Based on the initial group sparse beamforming vectors, we
in Stage 2 determine the task selection strategy A⋆. Finally,
we solve problem P (A⋆) to refine the optimization vari-
ables in Stage 3. In the remaining of this section, we propose
a BSO approach to solve problem P , while the details of
Stage 2 and Stage 3 are presented in Section IV. We provide
a graphic illustration in Fig. 2 to provide a better overview of
the proposed three-stage framework.

The main idea of the BSO approach is to first parti-
tion the variables into several blocks, and then alternately

optimize one of the blocks in each iteration while keep-
ing the others fixed [43]. Specifically, we partition the five
optimization variables into three blocks, denoted as B1 =
({vDL

nk }, {vUL
nk }, {pUL

k }),B2 = ΘDL, and B3 = ΘUL.

A. Optimizing Variables {vUL
nk }, {pUL

k }, and {vDL
nk }

When B2 and B3 are fixed, problem P is reduced to the
following problem

P 1 : minimize
{vDL

nk },{vUL
nk },{pUL

k }
Ptotal

({
pUL
k

}
,
{
vDL

nk

})

subject to (12a)-(12d) .

It is observed that optimization variables vUL
nk and vDL

nk are
coupled only in the objective function, but not in the con-
straints. For the sake of analysis convenience, we temporarily
dismiss the indicator term in the objective function and split
problem P 1 into two parts, i.e., the downlink part P 1-1 and
the uplink part P 1-2. Afterwards we will combine the uplink
and downlink parts to derive an effective solution to problem
P 1. The power minimization problem in the downlink part is

P 1-1 : minimize
{vDL

nk }

N∑

n=1

K∑

k=1

1
ηn

∥∥∥vDL
nk

∥∥∥
2

2

subject to (12a), (12c),

which is a celebrated problem formulation in unicast multiple-
input single-output systems. Due to the fact that an arbitrary
phase rotation of vector vDL

nk does not affect the SINR con-
straints (12a) [44], we can replace (12a) with the following
second-order cone (SOC) constraint
√√√√

∑

l ̸=k

∣∣∣
(
gDL

k

)H
vDL

l

∣∣∣
2

+ σ2
k ≤

1√
γDL
k

R

((
gDL

k

)H
vDL

k

)
,

(13)

where gDL
k = [(gDL

1k )T, . . . , (gDL
Nk )T]T and vDL

k =
[(vDL

1k )T, . . . , (vDL
Nk )T]T denote the aggregated channel

response vector and transmit beamforming vector with
respect to MD k, respectively. Therefore, problem P 1-1 is
recast as a convex second-order cone programming (SOCP),
which can be effectively solved by interior-point methods
using modern software like CVX [45].

On the other hand, the power minimization problem in the
uplink is given by

P 1-2 : minimize
{vUL

nk },{pUL
k }

K∑

k=1

pUL
k subject to (12b), (12d) .

Although the SINR constraints (12b) are similar to those in
the downlink counterpart, we cannot convexify them in a sim-
ilar way because the numerator involves both optimization
variables. Moreover, another issue in P 1-2 is that directly
optimizing this problem makes vUL

nk to be nearly zero, because
an arbitrary scaling of vUL

nk does not affect the uplink SINR
constraints (12b) [46]. Specifically, if (ṽUL

nk , p̃UL
k ) denotes the

optimal solution to problem P 1-2, then we have ṽUL
nk ≈

0, ∀n ∈ N, k ∈ K. Although the scaling issue does not
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violate the group sparsity structure of vnk , it indicates that
the receive beamforming vectors do not contribute to the task
selection. Based on the uplink-downlink duality, in the fol-
lowing, we shall propose a virtual downlink formulation to
overcome the scaling issue.

To facilitate an effective algorithm design, we relax problem
P 1-2 to the following problem

minimize
{vUL

nk },{pnk}

1
N

N∑

n=1

K∑

k=1

pnk

subject to pnk ≤ PUL
k ,max, ∀n ∈ N, k ∈ K, (14a)

pnk

∣∣∣
(
vUL

nk

)H
gUL

nk

∣∣∣
2

∑
l ̸=k pnl

∣∣∣
(
vUL

nk

)H
gUL

nl

∣∣∣
2
+σ2

n

∥∥vUL
nk

∥∥2
2

≥ γUL
k ,

∀n ∈ N, k ∈ K. (14b)

We can easily verify that problem (14) is indeed a relaxation to
problem P 1-2, because given any solution ({vUL

nk }, {pUL
k })

feasible to problem P 1-2, ({vUL
nk }, {pnk}) is also feasible

to problem (14) when pnk = pUL
k ,∀n ∈ N, and the objec-

tive value of problem (14) is no greater than that of P 1-2.
The motivation for this relaxation is that problem (14) can be
solved in the virtual downlink formulation so as to overcome
the scaling issue.

We first consider an ideal scenario that the MDs have
unlimited power budgets (i.e., PUL

k ,max = +∞,∀ k ∈ K).
Problem (14) is then equivalent to the following virtual
downlink power minimization problem

minimize
{vVDL

nk }
1
N

N∑

n=1

K∑

k=1

∥∥∥vVDL
nk

∥∥∥
2

2
(15a)

subject to SINRVDL
nk ≥ γUL

k , ∀n ∈ N, k ∈ K, (15b)

where vVDL
nk ∈ CLn×1 denotes the virtual downlink trans-

mit beamforming vector from BS n to MD k, and SINRVDL
nk

is the virtual downlink SINR observed by MD k defined

as SINRVDL
nk = |(gUL

nk )HvVDL
nk |2∑

l ̸=k |(gUL
nk )HvVDL

nl |2+σ2
n

. Note that in

SINRVDL
nk , the scaling issue does not exist for {vVDL

nk ,n ∈
N, k ∈ K}. The rigorous proof of the equivalence of
the uplink power minimization problem (14) and the vir-
tual downlink problem (15) can be derived by Lagrangian
duality, as shown in the Appendix. The optimal solutions
obtained by solving problem (15) have close connections
to solutions to problem (14), i.e., vVDL

nk = vUL
nk and∑N

n=1
∑K

k=1 ∥vVDL
nk ∥22 =

∑N
n=1

∑K
k=1 pnk . However, it is

worth mentioning that the equivalence between the virtual
downlink beamforming power and the uplink transmit power
does not necessarily hold, i.e., ∥vVDL

nk ∥22 ̸= pnk . Therefore
if PUL

k ,max < +∞, we cannot directly rewrite the transmit
power constraints (14a) as ∥vVDL

nk ∥22 ≤ PUL
k ,max,∀n,∀ k out

of intuition and add them to problem (15). Instead, we con-
sider a sum-power constraint to relax the uplink transmit power
constraints (14a), which is given by

N∑

n=1

K∑

k=1

∥∥∥vVDL
nk

∥∥∥
2

2
=

N∑

n=1

K∑

k=1

pnk ≤ N
K∑

k=1

PUL
k ,max. (16)

By introducing this mild power control to problem (15), we
need to solve the following problem

minimize
{vVDL

nk }
1
N

N∑

n=1

K∑

k=1

∥∥∥vVDL
nk

∥∥∥
2

2

subject to (15b), (16) . (17)

Similar to (13), constraint (15b) can be replaced with the
following SOC constraint
√√√√

∑

l ̸=k

∣∣∣
(
gUL

nk

)H
vVDL

nl

∣∣∣
2

+ σ2
n ≤

1√
γVDL
k

R

×
((

gUL
nk

)H
vVDL

nk

)
(18)

to make problem (17) a convex SOCP problem.
By exploiting the uplink-downlink duality and transforming

the uplink model into a virtual downlink model, we address
the challenge of the receive beamforming vectors scaling issue.
As {vVDL

nk } have the same group sparsity pattern as {vUL
nk },

combining the downlink and virtual downlink parts, we relax
P 1 to the following problem

minimize
{vDL

nk },{vVDL
nk }

1
N

N∑

n=1

K∑

k=1

∥∥∥vVDL
nk

∥∥∥
2

2
+

N∑

n=1

K∑

k=1

1
ηn

∥∥∥vDL
nk

∥∥∥
2

2

+
N∑

n=1

K∑

k=1

1{v̄nk ̸=0}P
c
nk

subject to (12c), (13), (16), (18), (19)

where v̄nk in the objective function is defined as v̄nk =
[(vVDL

nk )T, (vDL
nk )T]T. It is observed that all the constraints of

problem (19) are convex.
Although the feasible set is convex, problem (19) is a

nonconvex integer programming problem due to the indica-
tor function in the objective function. We identify that the
third term in the objective function of problem (19) is a
weighted ℓ0-norm of vector v̄ = [v̄T

11, v̄
T
12, . . . , v̄

T
NK ]T with

weights Pc
nk ’s, and it is non-convex. As ℓ1-norm is a well-

known convex relaxation to ℓ0-norm, we relax the weighted
ℓ0-norm as

N∑

n=1

K∑

k=1

1{v̄nk ̸=0}P
c
nk ≈

N∑

n=1

K∑

k=1

∥v̄nk∥2P
c
nk

=
N∑

n=1

K∑

k=1

×
√∥∥vDL

nk

∥∥2
2 +

∥∥vVDL
nk

∥∥2
2P

c
nk .

(20)

Note that (20) is actually the weighted mixed ℓ1,2-norm of vec-
tor v̄ . The mixed ℓ1,2-norm behaves like an ℓ1-norm on vector
[∥v̄11∥2, ∥v̄12∥2, . . . , ∥v̄NK ∥2]. The outer ℓ1-norm induces
the sparsity structure, while the inner ℓ2-norm is responsible
for forcing all coefficients in the beamforming group v̄nk to be
zero. By adopting mixed ℓ1,2-norm as the convex relaxation of
the indication function term, we can induce the group sparsity
structure of beamforming groups {v̄nk , n ∈ N, k ∈ K}.
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Algorithm 1: Mixed ℓ1,2-Norm Based Group Sparsity
Inducing for Problem P 1

Input: ΘUL,ΘDL

1. Solve the convex relaxation problem (21) to obtain
{vDL

nk }, {vVDL
nk }

2. Set vUL
nk = vVDL

nk , ∀n ∈ N, k ∈ K, and then solve
problem P 1-2 with fixed {vUL

nk } to obtain {pUL
k }

Output: {vDL
nk }, {vUL

nk }, {pUL
k }

By replacing the indication function with its convex surro-
gate, we relax problem (19) as the following convex problem

minimize
{vDL

nk },{vVDL
nk }

N∑

n=1

K∑

k=1

∥∥∥vVDL
nk

∥∥∥
2

2
+

N∑

n=1

K∑

k=1

1
ηn

∥∥∥vDL
nk

∥∥∥
2

2

+
N∑

n=1

K∑

k=1

√∥∥vDL
nk

∥∥2
2 +

∥∥vVDL
nk

∥∥2
2 Pc

nk

subject to (12c), (13), (16), (18) . (21)

Once we solve problem (21) and obtain the solutions
({vDL

nk }, {vVDL
nk }), the receive beamforming vector {vUL

nk } in
P 1 can be obtained by setting vUL

nk = vVDL
nk ,∀n ∈ N, k ∈

K, and {pUL
k } can be obtained by solving problem P 1-2 with

{vUL
nk } fixed, which is reduced to a linear program.
The overall algorithm for solving problem P 1 is summa-

rized in Algorithm 1.

B. Optimizing Variable ΘDL

For given B1 and B3, we optimize ΘDL to solve the result-
ing problem, which is termed as P 2. Since ΘDL does not
appear in the objective function of P , problem P 2 is in fact
a downlink feasibility detection problem, which is given by

P 2 : find ΘDL subject to (12a), (12e) .

According to the SINRDL expression given in (7), we have
∣∣∣∣∣

N∑

n=1

(
gDL

nk

)H
vDL

nl

∣∣∣∣∣

2

(a)
=

∣∣∣∣∣

N∑

n=1

((
hDL

d,nk

)H
+

(
hDL

r,k

)H
ΘDLGDL

n

)
vDL

nl

∣∣∣∣∣

2

(b)
=

∣∣∣∣
(
hDL

d,k

)H
vDL

l + β
(
aDL

)H

× diag
((

hDL
r,k

)H
)
G̃

DL
vDL

l

∣∣∣∣
2

, (22)

where (a) follows by substituting (6), and (b) holds
by defining hDL

d,k = [(hDL
d,1k )T, . . . , (hDL

d,Nk )T]T, vDL
l =

[(vDL
1l )T, . . . , (vDL

Nl )T]T, aDL = [θDL
1 , . . . , θDL

M ]H, G̃
DL =

[GDL
1 , . . . ,GDL

N ]. Note that in (22) the only term related to
phase shifts is aDL. Therefore for notational ease, we define
wDL

kl = β diag((hDL
r,k )H)G̃DL

vDL
l , bDL

kl = (hDL
d,k )HvDL

l ,

and the SINRDL expression in (7) can be equivalently rewrit-

ten as SINRDL
k = |bDL

kk +(aDL)HwDL
kk |2∑

l ̸=k |bDL
kl +(aDL)HwDL

kl |2+σ2
k
, leading to the

following inhomogeneous QCQP problem

find aDL

subject to
∣∣∣aDL

m

∣∣∣
2

= 1, ∀m ∈M, (23a)
∣∣∣bDL

kk +
(
aDL

)H
wDL

kk

∣∣∣
2

∑
l ̸=k

∣∣∣bDL
kl +

(
aDL

)H
wDL

kl

∣∣∣
2

+ σ2
k

≥ γk ,

∀ k ∈ K. (23b)

By introducing an auxiliary scalar t, and defining RDL
kl =[

wDL
kl (wDL

kl )H wDL
kl (bDL

kl )H

(wDL
kl )HbDL

kl 0

]
, and āDL =

[
aDL

tDL

]
,

problem (23) can be transformed into the following homo-
geneous QCQP problem

find āDL

subject to
∣∣∣āDL

m

∣∣∣
2

= 1, for m = 1, . . . ,M + 1,
(
āDL

)H
RDL

kk āDL +
∣∣bDL

kk

∣∣2
∑

l ̸=k

(
āDL

)HRDL
kl āDL +

∣∣bDL
kl

∣∣2 + σ2
k

≥ γk ,

∀ k ∈ K. (24)

The non-convexity of problem (24) lies in the unit-modulus
constraints. A common technique used to handle the noncon-
vex QCQP problems is matrix lifting. For ease of notation, we
omit the superscript DL if it does not cause any ambiguity. In
problem (24), as āHRkk ā = Tr(Rkk ā āH), and by introduc-
ing a new variable A = ā āH ∈ C(M+1)×(M+1), we rewrite
problem (24) as the following feasibility detection problem

find A

subject to Tr(RkkA) + |bkk |2 ≥ γk

∑

l ̸=k

Tr(RklA)

+ γk

⎛

⎝
∑

l ̸=k

|bkl |2 + σ2
k

⎞

⎠,∀ k ∈ K, (25a)

Amm = 1, for m = 1, . . . ,M + 1, (25b)

A ≽ 0, rank(A) = 1. (25c)

Here A ≽ 0 indicates that A is a positive semidefinite (PSD)
matrix. The challenge in solving problem (25) is the noncon-
vex rank-one constraint. The SDR technique is widely adopted
to tackle the rank-one constraint in QCQP problems [47].
By simply dropping the nonconvex rank-one constraint, SDR
relaxes the problem into a convex semidefinite programming
(SDP) problem, which can then be solved by CVX. If a fea-
sible A with rank one is found, then ā can be obtained by
singular value decomposition (SVD) of A.

However, such a relaxation may not be tight, i.e., the solu-
tion obtained by SDR may not satisfy the rank-one constraint.
As pointed out in [48], the performance of SDR degrades
sharply as the problem size grows. In our case, when M
and/or K is large, the probability of returning a rank-one
solution is low. If this is the case, additional steps (i.e.,
Gaussian randomization) are required to construct a rank-one
solution from the higher-rank solution obtained by solving
problem (25) [20], [47]. However, it is still possible that we
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fail to find a feasible solution to problem (24) after a large
number of Gaussian randomizations.

In other words, dropping the rank-one constraint cannot
accurately detect the feasibility of problem (25). Hence, we
propose a novel DC representation for the rank-one constraint,
which is guaranteed to obtain a solution satisfying the non-
convex rank-one constraint if problem (25) is feasible. Note
that for the PSD matrix A, the rank-one constraint indicates
that σ1(A) > 0 and σi (A) = 0, ∀ i = 2, . . . ,M + 1,
where σi (A) is the i-th largest singular value of A. And recall
that the trace norm and spectral norm of A are defined as
Tr(A) =

∑M+1
i=1 σi (A) and ∥A∥ = σ1(M ), respectively.

Hence, the rank-one constraint can be equivalently rewritten
as the difference of these two convex norms, i.e.,

rank(A) = 1⇔ Tr(A)− ∥A∥ = 0, Tr(A) > 0. (26)

Based on the DC representation for the nonconvex rank-one
constraint, we solve the following DC program

minimize
A≽0

g(A):= Tr(A)− ∥A∥

subject to (25a)-(25b) . (27)

Note that if the objective value g(A) is zero, the rank-one
constraint is satisfied and we obtain a feasible solution to
problem (25). Although problem (27) is still nonconvex due to
the concave term −∥A∥ in the objective, we can adopt succes-
sive convex approximation to solve it in an iterative manner.
Specifically, by linearizing the concave term, at iteration i we
need to solve the following convex problem

minimize
A≽0

Tr(A)−
〈
∂
∥∥∥A[i−1]

∥∥∥,A
〉

subject to (25a)-(25b) . (28)

where A[i−1] is the solution obtained at iteration i − 1 and
∂∥A[i−1]∥ denotes the subgradient of spectral norm at point
A[i−1]. Note that one subgradient of ∥A∥ can be efficiently
computed as q1q

H
1 , where q1 is the vector corresponding to

the largest singular value σ1(A) [49]. Given an initial A[0] and
by iteratively solving (28) until the objective function g(A)
in (27) becomes zero, we obtain an exact rank-one solution
according to (26). We design a practical stopping criterion
as Tr(A) − ∥A∥ < ϵDC , where ϵDC is a sufficiently small
positive constant.

The convergence characteristic of the iterative DC algorithm
for problem (27) is presented in the following proposition.

Proposition 1: The generated sequence {g(A[i ])} is strictly
decreasing and the sequence {A[i ]} converges to a critical
point of g from an arbitrary initial point A[0].

Proof: Please refer to [48, Appendix B] for more details.
In fact, the proposed DC algorithm can always find a fea-

sible A to problem (25), which guarantees the objective value
of problem (27) converges to zero. This is because the feasi-
ble region of problem (25) is always non-empty, at least the
obtained solution to problem (25) at iteration t (i.e., Θ(t)) is
still feasible at iteration t + 1. Therefore, the strictly decreas-
ing and non-negative sequence {g(A[i ])} can always converge
to zero within finite steps.

After obtaining a feasible A, the phase-shift matrix ΘDL

in P 2 can be recovered as follows. By SVD of A, we can
obtain the solution to problem (24) as āDL = [aDL

0 tDL
0 ]T,

then the solution to problem (23) can be computed as
aDL = aDL

0 /tDL
0 , and the solution to P 2 is given as

ΘDL = β diag((aDL)H).

C. Optimizing Variable ΘUL

As phase-shift matrix ΘUL does not appear in the objec-
tive function of P , given B1 and B2, the resulting problem
denoted as P 3 is also a feasibility detection problem

P 3 : find ΘUL subject to (12b), (12f) .

The same derivation process presented in the last subsection
is also applicable to transform the uplink problem P 3 into
a homogeneous QCQP, therefore details are omitted here for
brevity. Specifically, by defining

wUL
nkl = β diag

((
hUL

r,l

)H
)
GUL

n vUL
nk ,

bnkl =
(
hUL

d,nl

)H
vUL

nk ,

RUL
nkl =

[
wUL

nkl

(
wUL

nkl

)H
wUL

nkl

(
bUL
nkl

)H

(
wUL

nkl

)HbUL
nkl 0

]
, āUL =

[
aUL

tUL

]
,

we have the following uplink homogeneous QCQP problem

find āUL

subject to
∣∣āUL

m

∣∣2 = 1, for m = 1, . . . ,M + 1,

pUL
k

((
āUL

)H
RUL

nkk ā
UL +

∣∣bUL
nkk

∣∣2
)

∑
l ̸=k pUL

l

(
(āUL)HRUL

nkl ā
UL +

∣∣bUL
nkl

∣∣2
)

+ σ2
n

∥∥vUL
nk

∥∥2

2

≥ γk ,

∀n ∈ N, k ∈ K. (29)

Similar to the downlink counterpart, we can lift problem (29)
to the following feasibility detection problem

find A

subject to Tr(RnkkA) + |bnkk |2 ≥ γk

∑

l ̸=k

αkl Tr(RnklA)

+ γk

⎛

⎝
∑

l ̸=k

αkl |bnkl |2 + cnk

⎞

⎠, ∀n,∀ k , (30a)

Amm = 1, for m = 1, . . . ,M + 1, (30b)

A ≽ 0, rank(A) = 1, (30c)

where A = āUL(āUL)H, αkl = pUL
l /pUL

k and cnk =
σ2
n∥vUL

nk ∥
2
2/p

UL
k . Similarly, a feasible A to problem (30)

can be obtained by iteratively solving the following convex
problem

minimize
A≽0

Tr(A)−
〈
∂
∥∥∥A[i−1]

∥∥∥,A
〉

subject to (30a)-(30b), (31)

until the stopping criterion Tr(A)− ∥A∥ < ϵDC is satisfied.
The overall algorithm for solving problem P 2 (or P 3) is

summarized in Algorithm 2.
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Algorithm 2: DC Algorithm for Feasibility Detection
Problem P 2 (or P 3)

Input: {vDL
nk }, {vVDL

nk }, {pUL
k }, initial point A[0] and

set i = 0
while Tr(A[i ])− ∥A[i ]∥ < ϵDC do

1. i ← i + 1, ∂∥A[i−1]∥ = q1q
H
1

2. Solve problem (28) (or problem (31))
end
Decompose A as A = ā āH; Denote ā = [a0, t0]T;
Obtain a = a0/t0 and Θ=β diag

(
aH

)

Output: ΘUL (or ΘDL)

D. Unified BSO Approach

Based on the above discussions, problem P is solved by
iteratively solving problems P 1, P 2, and P 3 in an alter-
nating manner until convergence. We justify the effectiveness
and depict the convergence behavior of the proposed BSO
approach in the following proposition.

Proposition 2: With the BSO approach, the objective value
of P 1 is non-increasing in the consecutive iterations.

Proof: For ease of notation, we denote the objective value
of P 1 as f (V ,Ω), where the first variable V is an abstraction
of three optimization variables {vDL

nk }, {vUL
nk }, and {pUL

k } in
P 1, and the second variable Ω abstracts phase-shift matrices
ΘDL and ΘUL in P 2 and P 3. Assuming that (V (t),Ω(t))
is obtained at iteration t. If P 2 and P 3 are feasible,
i.e., (V (t),Ω(t+1)) exists, (V (t),Ω(t+1)) is also feasible
to P 1. Therefore, (V (t),Ω(t)) and (V (t+1),Ω(t+1)) are
feasible solutions to P 1 at the consecutive iterations t
and t + 1, respectively. We have the following inequality

f (V (t+1),Ω(t+1))
(a)
≤ f (V (t),Ω(t+1))

(b)
= f (V (t),Ω(t)),

where (a) holds because V (t+1) is the optimal solution to P 1
for a given Ω(t+1) at iteration t + 1, and (b) holds because
the objective value Ptotal depends only on the value of V and
is independent of Ω.

The obtained beamforming vectors {vUL
nk } and {vDL

nk } after
solving problem P should have group sparse patterns. In
the next section, we shall discuss how to design the task
selection strategy A based on the obtained solutions, and
present the holistic three-stage framework for the network
power minimization problem P original.

IV. THREE-STAGE FRAMEWORK FOR NETWORK

POWER MINIMIZATION PROBLEM

In this section, we propose a thorough three-stage frame-
work for problem P original. In Stage 1, we adopt the BSO
with mixed ℓ1,2-norm and DC algorithm to induce the group
sparsity structure of the uplink/downlink beamforming vectors
and optimize the phase-shift matrices. The obtained solutions
are served as a guideline to determine the inference task selec-
tion strategy A. In Stage 2, an ordering rule is proposed for
all tasks according to their priorities, which depend on the
structured-sparse beamforming vectors obtained in Stage 1
as well as several key system parameters (i.e., channel state

information, amplifier efficiency and task computation power).
Based on the task ordering, we perform a task selection pro-
cedure to finalize A. In Stage 3, the beamforming vectors
and the phase-shift matrices are refined with the finalized task
selection strategy A.

A. Stage 1. Group Sparsity Inducing

With randomly initialized phase-shift matrices ΘUL and
ΘDL, we repeatedly solve problems P 1, P 2, and P 3 based
on Algorithms 1 and 2 respectively in an alternating manner
until the following stopping criterion is satisfied: the rela-
tive improvement of objective values of problem P 1 defined
as (P (t)

total − P (t+1)
total )/P (t)

total is below a predefined threshold

ε, where P (t)
total and P (t+1)

total represent the objective values
obtained in iterations t and t + 1, respectively. The yielded
beamforming vectors should have the group sparsity struc-
tures. It is worth mentioning that the relative improvement is
expected to be non-negative, because Ptotal is non-increasing
as proved in Proposition 2.

B. Stage 2. Inference Task Selection

The next question is how to determine the task selection
strategy A. In fact, it is inappropriate to directly use the
beamforming vectors obtained in Stage 1 to finalize A, as the
vectors may contain some very small but nonzero coefficients.
As illustrated in (11), these nonzero coefficients indicate that
the corresponding tasks are performed by the BSs, which
may result in unnecessary computation power consumption.
To address this issue, we utilize the obtained group-structured
beamforming vectors as well as other prior information to
provide a guideline to determine A.

For ease of exposition, we define the set of all task indices
as {(n, k)|n ∈ N, k ∈ K}. The task indexed by (n, k)
is considered to be active if k ∈ An , and inactive other-
wise. Specifically, the priority of task (n, k) is defined as

τnk =
√

∥[gUL
nk ,gDL

nk ]∥2
2ηn

Pc
nk

∥vnk∥2. We sort all NK tasks in

a descending order according to their priorities, i.e., τπ1 ≥
τπ2 · · · ≥ τπNK , where π is a permutation of task indices
(n, k)’s. Intuitively, if BS n has a higher power amplifier effi-
ciency, a higher channel gain, and a higher beamforming gain
with respect to MD k, but a lower computation power con-
sumption, task (n, k) has a higher priority. A higher τnk implies
that task (n, k) is more power-efficient, therefore it is more
likely to be activated.

To finalize the set A, we need to detect the feasibility of a
sequence of problems

find
{
vDL

nk

}
,
{
vUL

nk

}
,
{
pUL
k

}

subject to (12a)-(12d), vπ[j ] = 0, (32)

where π[j ] = {πj+1, . . . ,πNK } denotes the inactive task set
at iteration j, and vπ[j ] = 0 represents that all coefficients in
those beamforming groups vnk ’s with index (n, k) ∈ π[j ] are
set to zero. Note that the number of active tasks is within [K,
NK]. Starting with j = K, we terminate the feasibility detection
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Algorithm 3: BSO With Mixed ℓ1,2-Norm and DC Based
Three-Stage Framework for Nonconvex Combinatorial
Problem P original

Input: initial phase-shift matrices ΘUL and ΘDL, and
threshold ε
Stage 1: Alternatively optimize B1, B2, and B3
while the improvement of the objective in problem P 1 is
greater than ε do

1. solve P 1 for vUL
nk , pUL

k , vDL
nk using Algorithm 1

2. solve P 2 for ΘDL using Algorithm 2
3. solve P 3 for ΘUL using Algorithm 2

end
Stage 2: Determine the inference task selection
1. Compute task priorities and sort all tasks in a
descending order based on their priorities
2. Iteratively solve problem (32) until feasible to finalize
the task selection strategy A⋆

Stage 3: Solve problem P (A⋆) to refine variables
{vDL

nk }, {vUL
nk }, {pUL

k },ΘDL,ΘUL

Output: A⋆, {vDL
nk }, {vUL

nk }, {pUL
k },ΘDL,ΘUL

procedure and return π[j ] until problem (32) is feasible. The
task selection strategy A⋆ can be easily obtained from π[j ].

Comparing problem (32) to P 1, as the added constraint
vπ[j ] = 0 is convex, we can solve problem (32) using
Algorithm 1. Details are thus omitted here for brevity.

C. Stage 3. Optimization Variables Refinement

After determining the task selection strategy A⋆, we should
refine the beamforming vectors to make sure vnk = 0 if k /∈
An ,∀n ∈ N, and the phase-shift matrices at the RIS need to
be refined as well. This can be achieved by solving problem
P (A⋆). Since the group sparsity constraints (9f) are convex,
the BSO with mixed ℓ1,2-norm and DC algorithm to solve
problem P is also applicable here to obtain the solutions.
Details are thus omitted here.

D. Complexity Discussions

The overall algorithm for green edge inference is sum-
marized in Algorithm 3. The computational complexity of
Algorithm 1 is dominated by solving the SOCP problem (21),
which is O(L3.5K 3.5) using interior-point methods [50]. The
complexity of Algorithm 2 is dominated by iteratively solv-
ing the SDP problem (28) (or problem (31)) and computing
the SVD of A. An SDP problem with an a × a semidef-
inite matrix variable and b SDP constraints is solved with
complexity O(

√
a(a3b + a2b2 + b3)) by interior-point meth-

ods [51]. For problems (28) and (31), we have a = M + 1,
b = K + 1 and a = M + 1, b = NK + 1, respectively.
It is also observed in our simulations that the convergence
rate of the iterative procedure is fast (less than 10 itera-
tions), therefore, the overall complexity of Algorithm 2 is
O(
√

M (M 3NK + M 2N 2K 2 + N 3K 3)). In short, the com-
putational complexity involved in Stage 1 is O(TR), where
T is the required iterations for the BSO to converge, and

R = L3.5K 3.5 + M 3.5NK + M 2.5N 2K 2 + M 0.5N 3K 3 is
the polynomial term.

We need to solve at most NK SOCP problems in Stage 2,
and hence the worst-case complexity is O(NK (L3.5K 3.5)).
The complexity involved in Stage 3 is the same as that in
Stage 1. Therefore, the overall complexity for the proposed
three-stage framework is O(TR + NL3.5K 4.5). In other
words, we propose a polynomial complexity algorithm for the
combinatorial problem P original.

V. SIMULATION RESULTS

In this section, we present the simulation results to verify
the effectiveness of our proposed algorithm. We consider a
network with five 8-antenna BSs and six MDs uniformly and
randomly distributed in a square region of 300 m × 300 m. An
RIS with 30 reflecting elements is located at the 3-dimensional
coordinate (150, 0, 15). In addition, the BSs are with height
30 m (i.e., the coordinates of the BSs are (x, y, 30)), while the
MDs are with height 0 m (i.e., the coordinates of the MDs are
(x, y, 0)).

We consider the following distance-dependent path loss
model L(d) = T0( d

d0
)−α, where T0 is the constant path loss

at the reference distance d0 = 1 m, d is the Euclidean distance
between the transceivers, and α is the path loss exponent. Each
antenna of the BSs is assumed to have an isotropic radiation
pattern (i.e., 0 dBi antenna gain), while each element of the
RIS has a 3 dBi gain for fair comparison because it reflects
signals only in its front half-space [29], [52]. Moreover, Rician
fading is considered as the small-scale fading for the BS-RIS
and RIS-MD channels. For example, the BS-RIS channel can
be expressed as Gx

n =
√

κBR
1+κBR

GLOS
n +

√
1

1+κBR
GNLOS

n ,
where κBR is the Rician factor representing the ratio of
power between the deterministic line-of-sight (LOS) path
and the scattered paths, GLOS

n is the LOS component mod-
eled as the product of the steering vectors of the BS-RIS
link [53], GNLOS

n is Rayleigh fading components with entries
distributed as CN(0, 1), and x ∈ {UL,DL}. The entries
in Gx

n are then multiplied by the square root of distance-
dependent path loss denoted by αBR. According to the 3GPP
propagation environment from [54, Table B.1.2.1-1], we set
αBR = 2.2. In addition, other channels are similarly gen-
erated with αBM = 3.67 and κBM = 0 (i.e., Rayleigh
fading to account for rich scattering) for the BS-MD channel,
αRM = 1.69 and κRM = 3 for the RIS-MD channel.

We consider a system with bandwidth 1 MHz and set
T0 = − 30 dB. The effective noise power for the BSs and
the MDs are σ2

n = − 90 dBm and σ2
k = − 80 dBm, respec-

tively. Without specified otherwise, other parameters are set
as follows: PDL

n,max = 1 W, PUL
n,max = 1 W, Pc

nk = 0.45 W,
ηn = 0.25, β = 1, ε = 10−2, γUL

k = 1
2γDL

k , and
ϵDC = 10−6.

We compare the proposed BSO with mixed ℓ1,2-norm
and DC algorithm (abbreviated as BSO-ℓ1,2-DC) with the
following benchmarks.

• Without-RIS: Without the deployment of an RIS, the
equivalent channels in (2) and (6) contain only the direct
link, i.e., hUL

r,k = hDL
r,k = 0,∀ k . As we do not need to
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TABLE I
COMPARISON BETWEEN SYSTEMS WITH AND WITHOUT AN RIS

optimize phase shifts in this case, the alternating process
in Stage 1 is simplified to solve P 1 only once.

• BSO with mixed ℓ1,2-norm and Random Phase (abbrevi-
ated as BSO-ℓ1,2-RP): In this case, the phase shifts of all
reflecting elements in both uplink and downlink transmis-
sions are randomly chosen from [0, 2π) and then used to
solve problem P 1. We do not solve problems P 2 and
P 3 in Stage 1 subsequently to optimize the phase shifts.
This benchmark is designed to reveal the necessity of
optimizing the phase-shift matrices.

• BSO with mixed ℓ1,2-norm and SDR (abbreviated as
BSO-ℓ1,2-SDR): In this case, the nonconvex rank-one
constraints in (25) and (30) are dropped. Gaussian ran-
domization is then adopted to obtain a feasible solution to
problems P 2 and P 3. The number of randomly gener-
ated vectors for Gaussian randomization is set as 1000. If
Gaussian randomization fails to find a feasible solution,
we terminate the alternating process in Stage 1.

• Decoupled BSO with mixed ℓ1,2-norm and DC (abbre-
viated as BSO-ℓ1,2-DC-decoupled): Instead of solving
the coupled uplink and downlink power minimization
problem (19) in Stage 1, in this case we solve P 1-1
and P 1-2 individually to derive the decoupled uplink
and downlink designs. Stage 2 and Stage 3 are the same
as BSO-ℓ1,2-DC.

We first compare our RIS-aided communication system with
the conventional one without the assistance of an RIS. For
fair comparison, we do not explicitly optimize the phase-shift
matrices, i.e., we compare the performance of Without-RIS
and BSO-ℓ1,2-RP.

We study the relationship between the feasible probability
of problem P original and the target SINR γDL

k . The feasible
probability of problem P original is defined as

P
{
P original is feasible

}

=
number of simulations P original is feasible

total number of simulations
.

As the target SINR requirements become more stringent, i.e.,
larger values of γUL

k and γDL
k , the feasibility probability of

problem P original is expected to decline. Results illustrated
in Table I are averaged over 1000 independently generated
channel realizations. We observe that the conventional system
without RIS almost fails to support those settings with a target
SINR being higher than 0 dB, while the RIS-aided system can
still support with a high probability. In terms of the maximum
SINR that the communication systems can support, we observe
that there exists at least a 10 dB gain of the RIS-aided system
over the system without RIS.

The lower part of Table I illustrates the overall network
power consumption of systems with and without RIS. Under

Fig. 3. Overall network power consumption versus target SINR γDL
k .

Fig. 4. Convergence behaviors of both BSO-ℓ1,2-DC and BSO-ℓ1,2-SDR
algorithms.

the same SINR requirement, it is observed that BSO-ℓ1,2-RP
yields significantly lower power consumption. The supreme
performance gain demonstrates that the deployment of an RIS
in wireless communication systems can greatly boost the SINR
and in turn reduce the overall network power consumption.

We also show the superiority of our proposed BSO-ℓ1,2-DC
algorithm in terms of the overall network power consumption,
and the results obtained by averaging over 1000 independent
channel realizations are shown in Fig. 3. The first observation
is that both the BSO-ℓ1,2-DC and BSO-ℓ1,2-SDR algorithms
significantly outperform BSO-ℓ1,2-RP, which demonstrates
that dynamically optimizing the phase-shift matrices accord-
ing to the beamforming vectors can reduce the network power
consumption to a large extent. In addition, we observe that the
proposed BSO-ℓ1,2-DC algorithm yields much lower overall
network power consumption and is more energy efficient than
the BSO-ℓ1,2-SDR algorithm. Given an overall power budget
(e.g., 8.5 W), BSO-ℓ1,2-DC can achieve 1.5 dB higher SINR
for the MDs than BSO-ℓ1,2-SDR. Such a performance gain is
mainly because BSO-ℓ1,2-SDR may early terminate the alter-
nating BSO process in Stage 1 and cannot further proceed to
find feasible solutions to problems P 2 and/or P 3. To make
this more explicit, Fig. 4 shows the objective values of problem
P 1 in the first 10 alternating iterations in a specific channel
realization. It is observed that as the BSO approach proceeds,
the overall network power consumption for both BSO-ℓ1,2-
DC and BSO-ℓ1,2-SDR algorithms are non-increasing, which
validates our analysis in Proposition 2. It is also observed that
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Fig. 5. Number of total performed tasks versus target SINR γDL
k .

Fig. 6. Transmit power consumption versus target SINR γDL
k .

the BSO-ℓ1,2-SDR algorithm terminates at the 5th iteration,
as SDR fails to obtain feasible solutions to problems P 2
and/or P 3 even with Gaussian randomization techniques. In
contrast, DC can always yield feasible solutions as we have
discussed in Section III-B, therefore BSO-ℓ1,2-DC terminates
the alternating process only when the consecutive iterations
make little progress. Comparing BSO-ℓ1,2-DC-decoupled to
BSO-ℓ1,2-DC, we observe that BSO-ℓ1,2-DC always yields
lower power consumption than BSO-ℓ1,2-DC-decoupled. This
is because by coupling uplink and downlink beamforming
designs, BSO-ℓ1,2-DC provides more accurate information to
the task ordering rule and thus arranging all tasks in a more
reasonable order. Moreover, the performance gap between
BSO-ℓ1,2-DC-decoupled and BSO-ℓ1,2-DC shrinks as the tar-
get SINR grows. This indicates that when the target SINR
is high, the impact of task order on reducing the overall
power consumption decreases because nearly all tasks should
be selected and performed.

Another interesting point worth mentioning in Fig. 3 is
that the performance gaps between BSO-ℓ1,2-DC and BSO-
ℓ1,2-SDR are getting larger as the value of the target SINR
increases, which indicates that BSO-ℓ1,2-DC is especially
appealing when high-quality services are required by the MDs.
This is because a higher target SINR leads to a narrower feasi-
ble region of problems P 2 and P 3, making SDR less likely
to find a feasible solution. In short, Fig. 3 shows that the
proposed BSO-ℓ1,2-DC is able to reduce the overall network
power consumption by 10% in the low SINR regime, and by
up to 30% in the high SINR regime.

The number of tasks performed by all the BSs and the trans-
mit power consumption versus the target SINR are shown in
Fig. 5 and Fig. 6, respectively. As the target SINR increases,
both the number of performed tasks and transmit power con-
sumption increase. It is observed in Fig. 5 that BSO-ℓ1,2-DC
can always perform fewer tasks to satisfy a certain target
SINR. In other words, the long-lasting alternating iterations of
BSO-ℓ1,2-DC shown in Fig. 4 helps in turn promote the group

Fig. 7. Discrete and continuous phase shifts.

sparsity structure of beamforming vectors, thereby achieving
lower computation power consumption. It is interesting to
notice that BSO-ℓ1,2-DC-decoupled selects even more tasks
than BSO-ℓ1,2-RP when the target SINR is 0 dB. This indi-
cates the urgent demands to couple the uplink and downlink
beamforming designs especially in the low SINR regime, so
as to accurately characterize the tasks ordering rule and select
the performed tasks reasonably. In terms of the transmit power
consumption depicted in Fig. 6, we make the similar obser-
vation that BSO-ℓ1,2-DC yields the lowest transmit power
consumption. Finally, it is also observed that the performance
gaps between BSO-ℓ1,2-DC and other algorithms tend to be
larger in the high SINR regime.

We compare the performances of discrete and continuous
phase shifts in Fig. 7. With a b-bit resolution, the set of
possible discrete phase shifts at each element is given as
D = {0,∆θ, 2∆θ, . . . , (2b − 1)∆θ}, where ∆θ = 2π/2b .
After solving problems P 2 and P 3 to obtain continuous
phase shift at each reflecting element, we quantize it to its
nearest neighbor in D. The quantization process takes place
in each iteration of Stage 1, which influences the subsequent
task selection process in Stage 2. For fair comparison, in sim-
ulations we consider that all NK tasks are performed and only
show the impact of discrete phase shifts on the transmit power
consumption. It is observed that the performances of discrete
and continuous phase shifts are comparable when b = 6, which
indicates a 6-bit resolution discrete phase shifts is practically
sufficient.

VI. CONCLUSION

In this article, we investigated an RIS-aided edge infer-
ence system with multiple BSs cooperatively serving multiple
MDs, taking into account both the uplink and down-
link transmissions. The design of an energy-efficient edge
inference system was formulated as a joint task selection
strategy, uplink/downlink beamformers, transmit power, and
uplink/downlink phase-shift matrices design problem. A BSO
approach was proposed to decouple the optimization vari-
ables. For an efficient algorithm design, mixed ℓ1,2-norm
was adopted to induce group sparsity of uplink/downlink
beamforming vectors, while the matrix lifting and DC tech-
niques were exploited to handle the nonconvex rank-one
constraint and in turn solve the phase-shift matrix optimization
problems. We also clarified the convergence behavior of
the proposed BSO approach. Through extensive simulations,

Authorized licensed use limited to: ShanghaiTech University. Downloaded on August 02,2021 at 13:12:52 UTC from IEEE Xplore.  Restrictions apply. 



HUA et al.: RECONFIGURABLE INTELLIGENT SURFACE FOR GREEN EDGE INFERENCE 977

L
(
vVDL

nk ;λnk

)
=

N∑

n=1

K∑
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∥∥∥vVDL
nk

∥∥∥
2

2
−

N∑
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λnk

⎡

⎣
∣∣∣∣
(
gUL

nk
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vVDL

nk

∣∣∣∣
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∣∣∣∣
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∣∣∣∣
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⎦
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⎦vVDL
nk

=
N∑
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λnkσ2
n +

N∑
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(
vVDL
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)H
[
I +

K∑

l=1

λnlg
UL
nl

(
gUL

nl

)H
−

(
1 +

1
γk

)
λnkg

UL
nk

(
gUL

nk

)H
]
vVDL

nk

(33)

we demonstrated that deploying an RIS can significantly
reduce the overall network power consumption. Furthermore,
the effectiveness of the proposed DC algorithm in inducing
low-rank solutions was also verified.

We identify the following relevant extensions as our future
work. Developing a robust transmission design for RIS-aided
edge inference with imperfect CSI is an interesting exten-
sion. Taking into account the RIS with coupled reflection
amplitude and phase shifts is another interesting extension.
In terms of scalability, the statistical CSI and the alternating
direction method of multipliers (ADMM)-based parallel con-
vex optimization framework can be utilized to further alleviate
the computation burden for large-scale edge inference systems.

APPENDIX

We will show that problem (14) with PUL
k ,max = +∞,∀ k ∈

K is equivalent to problem (15). As the fraction 1
N in the

objective does not affect the equivalence, we dismiss the
fraction to simplify the presentation.

The Lagrangian of problem (15) is shown in (33) at the
top of the page. The dual function is given by g(λnk ) =
minimize

vnk
L(vVDL

nk ;λnk ). The Lagrange dual problem is

given as

maximize
{λnk}

N∑

n=1

K∑

k=1

λnkσ2
n

subject to λnk ≥ 0, Λn ≽
(

1 +
1
γk

)
λnkg

UL
nk

(
gUL

nk

)H
,

∀n ∈ N, k ∈ K, (34)

where Λn = I+
∑

l λnlg
UL
nl (gUL

nl )H, and strong duality holds.
Now we show that problem (14) is equivalent to

problem (34). As vUL
nk is not in the objective of problem (14),

the optimal vUL
nk that maximizes the SINR (14b) is

the MMSE receiver given by v̂UL
nk = Γ−1gUL

nk , where
Γ =

∑K
l=1 pnlg

UL
nl (gUL

nl )H + σ2
nI [55]. Substituting v̂UL

nk
into (14b), we get

(
1 +

1
γk

)
pnk

(
gUL

nk

)H
Γ−1gUL

nk ≥ 1

(a)⇔ Γ ≼
(

1 +
1
γk

)
pnkg

UL
nk

(
gUL

nk

)H
,

where (a) uses the property yHX−1y ≥ 1 ⇔ X ≼ yyH

proved in [55, Lemma 1]. By defining pnk = λnkσ2
n , Γ =

σ2
nΛn , the uplink problem (14) is then equivalent to

minimize
{λnk}

N∑

n=1

K∑

k=1

λnkσ2
n

subject to λnk ≥ 0, Λn ≼
(

1 +
1
γk

)
λnkg

UL
nk

(
gUL

nk

)H
,

∀n ∈ N, k ∈ K. (35)

The optimal {λnk} in both problems (34) and (35) will meet
the SINR constraints with equality [44]. Therefore, we can
safely reverse the SINR constraints as well as minimization to
maximization in problem (35), which is now exactly the same
as problem (34).
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